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Fully hardware-implemented memristor 
convolutional neural network

Peng Yao1, Huaqiang Wu1,2*, Bin Gao1,2, Jianshi Tang1,2, Qingtian Zhang1, Wenqiang Zhang1,  
J. Joshua Yang3 & He Qian1,2

Memristor-enabled neuromorphic computing systems provide a fast and energy-
efficient approach to training neural networks1–4. However, convolutional neural 
networks (CNNs)—one of the most important models for image recognition5—have 
not yet been fully hardware-implemented using memristor crossbars, which are  
cross-point arrays with a memristor device at each intersection. Moreover, achieving 
software-comparable results is highly challenging owing to the poor yield, large 
variation and other non-ideal characteristics of devices6–9. Here we report the 
fabrication of high-yield, high-performance and uniform memristor crossbar arrays 
for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to 
improve parallel-computing efficiency. In addition, we propose an effective hybrid-
training method to adapt to device imperfections and improve the overall system 
performance. We built a five-layer memristor-based CNN to perform MNIST10 image 
recognition, and achieved a high accuracy of more than 96 per cent. In addition to 
parallel convolutions using different kernels with shared inputs, replication of 
multiple identical kernels in memristor arrays was demonstrated for processing 
different inputs in parallel. The memristor-based CNN neuromorphic system has  
an energy efficiency more than two orders of magnitude greater than that of  
state-of-the-art graphics-processing units, and is shown to be scalable to larger 
networks, such as residual neural networks. Our results are expected to enable a 
viable memristor-based non-von Neumann hardware solution for deep neural 
networks and edge computing.

CNNs have become one of the most important deep neural networks 
(DNNs)5 and play a vital role in image-processing-related tasks, such 
as image recognition11, image segmentation and object detection12. 
A typical computing procedure for a CNN involves a large number of 
sliding convolutional operations. In this respect, computing units that 
support parallel multiply–accumulate (MAC) calculations are highly 
desired. Such demand has led to the redesign of conventional comput-
ing systems to operate CNNs with higher performance and lower power 
consumption, ranging from general application platforms, such as 
graphics-processing units (GPUs)13, to application-specific accelera-
tors14,15. However, further improvements in computing efficiency will 
ultimately be constrained by the von Neumann architecture of these 
systems, in which the physical separation of memory and processing 
units results in substantial energy consumption and large latency in data 
shuffling between units16. By contrast, memristor-enabled neuromor-
phic computing provides a promising non-von Neumann computing 
paradigm in which the data are stored, thus eliminating the cost of data 
transfer1,2. By directly using Ohm’s law for multiplication and Kirchhoff’s 
law for accumulation, a memristor array is capable of implementing 
parallel in-memory MAC operations, leading to analogue in-memory 
computing with greatly improved speed and energy efficiency3.

Studies on memristor-based neuromorphic computing have covered 
a broad range of topics, from device optimization to system implemen-
tation6,17–23. Several experimental demonstrations4,24–28 related to practi-
cal applications of in-memory computing have been reported as well. 
The most recent studies report the demonstrations of two-layer4 and 
three-layer27 memristor multi-layer perceptronsfor image recognition 
using the MNIST (Modified National Institute of Standards and Technol-
ogy) handwritten-digit database10. However, a complete CNN, which is 
essential for more complex image-recognition tasks, has not yet been 
demonstrated in a fully memristor-based hardware system. The reason 
mainly pertains to the lack of an efficient solution for the implementa-
tion27 of a memristor-based CNN (mCNN): first, the fabricated mCNN 
usually suffers from a poor yield and non-uniformity of memristor 
crossbar arrays4,7,8. Second, it is difficult to achieve a performance (for 
example, image-recognition accuracy) comparable to software results 
owing to device imperfections, such as variations, conductance drift 
and device state locking6–9. Third, the key convolutional operation in 
CNNs is time-consuming because of the need to slide over different 
input patches, which is usually a sequential process and results in speed 
mismatch between the memristor convolver and the memristor array 
for fully connected vector–matrix multiplication (VMM).
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In this study, a complete five-layer mCNN for MNIST digit image 
recognition was successfully demonstrated. The optimized material 
stacks enabled reliable and uniform analogue switching behaviours 
in 2,048 one-transistor–one-memristor (1T1R) arrays. With the pro-
posed hybrid-training scheme, the experimental recognition accuracy 
reached 96.19% for the entire test dataset. Furthermore, replication of 
the convolutional kernels to three parallel memristor convolvers was 
implemented to reduce the mCNN latency roughly by a factor of 3. Our 
highly integrated neuromorphic system provides a feasible solution 
to substantially improve the CNN efficiency by closing the throughput 
gap between memristor-based convolutional computation and fully 
connected VMM.

Realizing a practical memristor-based neuromorphic computing 
system usually requires the integration of multiple memristor crossbar 
arrays. In general, splitting the weights into different arrays is beneficial 
for parallel computing, which is increasingly needed with increasing 
network scales. However, previous memristor-based demonstrations 
relied on a single array4,24–26, mainly because of the challenge of produc-
ing highly repeatable arrays. The variability and non-ideal character-
istics of memristive devices are considered as substantial hurdles to 
the application of neuromorphic computing7–9.

Here we propose a versatile memristor-based computing architec-
ture for neural networks, shown in Fig. 1a. The memristor cell uses 
a material stack of TiN/TaOx/HfOx/TiN, and shows continuous con-
ductance-tuning capability (see Supplementary Information) in both 
potentiation (SET) and depression (RESET) by modulating the electric 

field and heat29. The materials and fabrication process (see Methods for 
details) are compatible with the conventional CMOS (complementary 
metal–oxide semiconductor) process, so that the memristor arrays can 
be conveniently built in the back end of line in a silicon fab to reduce 
process variations and achieve high reproducibility. The fabricated 
crossbar arrays exhibit uniform analogue switching behaviours under 
identical programming conditions. Hence, a multiple-memristor-array 
hardware system (see Supplementary Information) was built using a 
customized printed circuit board (PCB) and a field-programmable 
gate array evaluation board (ZC706, Xilinx). As the system sche-
matic shows, the system mainly consists of eight memristor-based  
processing elements (PEs). Each PE has its own integrated 2,048-cell 
memristor array. Each memristor is connected to the drain terminal 
of a transistor, namely, in a 1T1R configuration (see Supplementary 
Information). The core PCB subsystem with eight memristor array chips 
is presented in Fig. 1b. Each memristor array (right inset of Fig. 1b) has 
an assembly of 128 × 16 1T1R cells. There are 128 parallel word lines and 
128 source lines horizontally, and 16 bit lines vertically (see Methods for 
details). This array exhibits remarkably repeatable multi-level conduct-
ance states, as shown by the test results in Fig. 1c and the measured data 
from the remaining 2,048-cell arrays in Extended Data Fig. 1. Figure 1c 
shows the distribution of 1,024 memristors in 32 different conductance 
states, where all the curves are separated without any overlap. Identical 
SET and RESET pulse trains with a pulse width of 50 ns were employed in 
the closed-loop programming24 operations to reach a certain conduct-
ance state. The measurement flow is described in Methods.
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Fig. 1 | Memristor-based hardware system with reliable multi-level 
conductance states. a, Schematic of the system architecture with eight 
integrated memristor PE units and other functional blocks. DRAM, dynamic 
random-access memory; ARM core, control unit with ARM (Acorn RISC 
Machine) architecture. b, Left, photograph of the integrated PCB subsystem, 
also known as the PE board. Right, image of a partial PE chip consisting of a 
2,048-memristor array and on-chip decoder circuits. c, Cumulative probability 

distribution of 1,024 cells with respect to 32 independent conductance states. 
The conductance is equivalently represented by the read-out current under a 
0.2-V voltage pulse. For programming, the SET conditions were VWL = 1.8 V for 
the word-line voltage, VBL = 2.0 V (50 ns pulse) for the bit-line voltage and 
VSL = 0 V for the source-line voltage; the RESET conditions were VWL = 4.7 V, 
VBL = 0 V and VSL = 1.8 V (50 ns pulse).
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As shown in Fig. 2a, a five-layer CNN was constructed on a memristor-
based hardware system to recognize MNIST handwritten-digit images. 
The detailed data flow in the CNN and the corresponding memristor 
mapping are described in Methods.

Realizing memristor-based convolutional operations requires per-
forming sliding operations with various kernels. Memristor arrays are 
highly efficient in achieving parallel MACs under shared inputs for 
different kernels22. Figure 2b shows a typical convolution example at a 
particular slipping step, and Fig. 2c reveals the associated events in the 
1T1R memristor array. The input value is encoded by the pulse number 
according to its quantized bit number (Extended Data Fig. 2). A signed 
kernel weight is mapped to the differential conductance of a pair of 
memristors. In this manner, all the weights of a kernel are mapped to 
two conductance rows: one row for positive weights with positive pulse 
inputs and the other for negative weights with equivalent negative 
pulse inputs. After inputting the encoded pulses into the bit lines, the 
output currents through the two differential source lines are sensed 

and accumulated. The differential current is the weighted sum corre-
sponding to the input patch and the chosen kernel. Different kernels 
with different weights are mapped to different pairs of differential 
rows, and the entire memristor array operates MACs in parallel under 
the same inputs. All the desired weighted-sum results are obtained 
concurrently.

In typical CNN training, it is necessary to propagate the objective deriva-
tive backwards with respect to the last outputs, to determine all weight 
updates10. This task requires highly complex operations to apply encoded 
read pulses to source lines from back to front and layer by layer. Further-
more, it is challenging to train a complicated memristor DNN, owing to 
non-ideal device characteristics, such as nonlinearity and asymmetric 
conductance tuning6,27. In contrast to the pure in situ training solution, 
the ex situ training method appears to be a shortcut that takes advantage 
of existing high-performing parameters. However, inevitable hardware 
imperfections, such as defective devices and parasitic wire resistance and 
capacitance, would blur the weights and degrade the system performance 
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Fig. 2 | Five-layer mCNN with memristor convolver. a, Structure of the five-
layer mCNN used for MNIST image recognition, with alternating convolutional 
(C1, C3) and subsampling (S2, S4) layers. The input is a 28 × 28 greyscale (8-bit) 
digit image. The mapping relations between the weights of different layers and 
the independent PEs are illustrated (see Methods for details). The top labels 
give the kernel size (input channel depth × filter height × filter width × filter 
batch size) for C1 and C3, the pooling size for S2 and S4 and the weight size for 
the FC layer (input neuron number × output neuron number). The bottom 
labels provide the feature map dimension (height × width × channel depth) or 
the vector dimension. b, Typical convolutional case during the slipping 

process. The grey box in the image confines the input patch of this sample case. 
xm,n indicates the relevant pixel at the crossing of row m and column n. Kernels i 
and j each have a total of 3 × 3 weights. c, The equivalent memristor convolver of 
the convolutional operation in b. Throughout the entire parallel computing 
process, all word lines (WL) are set to VWL = 4.5 V. The injected bit line (BL) pulses 
are 0.2 V, and the source lines (SL) are clamped at 0 V. w represents the element 
value in the weight matrix, and g+ and g− represent the device conductance 
values for the positive and negative weights in the differential pair, 
respectively.
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when transferring the ex situ learned weights to memristor conductances4. 
Therefore, ex situ training normally requires prior knowledge of the hard-
ware situation and learns weights on the basis of this costly awareness using  
software.

To circumvent various non-ideal device characteristics, a hybrid-
training method is proposed to implement the mCNN. The entire flow-
chart, illustrated in Fig. 3a, includes two stages. First a CNN model is 
trained ex situ, and then all the determined weights are transferred to 
the memristor PEs by a closed-loop writing method. In the next step, 
the external input propagates forwards through the mCNN, and only 
the last fully connected (FC) layer is trained in situ afterwards to tune 
the memristor conductance. It should be pointed out that the proposed 
hybrid learning method is different from typical transfer learning27,30. 
Hybrid training aims to accommodate the device variations in the pre-
vious layers to implement the parallel mCNN efficiently through the 
in situ training of the memristor weights, whereas transfer learning 
typically retrains the weights of the FC layers (hereafter, FC weights) 
using software to obtain knowledge on a new dataset.

Here the hybrid-training technique emphasizes the training of FC 
weights to compensate for existing device imperfections, and it could 
be extended as a generic system approach to address device variations 
and other non-ideal device characteristics by in situ tuning of some 
memristor weights. Hybrid training is applicable to a wide range of 
neural network models and could be used to address non-ideal device 
characteristics regardless of the specific type of memristor device. 
However, it is worth mentioning that, compared with traditional ex situ 
training, hybrid training requires fetching the training data to realize 
in situ conductance tuning; therefore, additional memory blocks or 
data-transmission modules might be required.

A memristor model is established to validate that the in situ training 
of only the FC layer is generally adequate for compensating for device 

imperfections and that it yields remarkable generalization results 
(see Methods for details). In this manner, hybrid training uses the advan-
tages of both ex situ and in situ training, which complement each other.

To realize an mCNN with hybrid training (Fig. 3b), a model (Fig. 2a) 
was trained ex situ in Python with TensorFlow on a training set contain-
ing 55,000 images. The recognition accuracy for the 10,000 test digit 
images was 97.99%, which was taken as the baseline accuracy. The well 
trained weights were rescaled to meet the unified memristor conduct-
ance window and quantized from 32-bit floating type to 15-level fixed-
point type (see Methods for details). Reasonable weight quantization 
caused a tolerable performance degradation; for example, the 4-bit 
quantization of kernel weights and 2-bit quantization of the FC weights 
for a typical CNN model, AlexNet, was shown to induce a 2.60% increase 
in the recognition error for ImageNet (a widely used image database 
for visual object recogoniction) classification compared with the 32-bit 
quantization of kernel weights and FC weights31. The quantization of 
the 15-level fixed point relaxed the conductance mapping requirements 
to speed up weight transfer, and ensured a high recognition accuracy 
of 96.92%, close to the software baseline.

Subsequently, the quantized kernel weights of the convolutional lay-
ers and the weights of the FC layer were transferred to the correspond-
ing memristor conductance (Fig. 2a). The weight-transfer accuracy 
distributions of the convolutional layers C1 and C3 and the FC layer 
are shown in Fig. 3c–e. The error distributions probably arise from 
device variations, conductance drift and state locking. The memris-
tor hardware system still achieves a recognition accuracy of 95.07% 
(see Methods for details) on the 10,000 test images—a 2.92% accuracy 
loss compared with the baseline value of 97.99%. After an epoch of 550 
training iterations (a mini-batch of 100 training images was fed into the 
mCNN for one iteration) on the entire training database, the recognition 
error rate for the 10,000 test images decreased considerably from the 
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initial value of 4.93% to the final value of 3.81% (Fig. 3f). The error rate 
on the training set also dropped from 4.82% to 3.21%.

In a memristor-based neuromorphic computing system, the accuracy 
loss is mainly attributed to two factors: first, the presence of non-ideal 
device characteristics, such as device variations, array yield problems 
and device reliability issues; second, the limited precision due to weight 
quantization. Even though the accuracy is not fully recovered given the 
limited quantization precision, the experimental results suggest that 
the hybrid-training method could effectively recover high recogni-
tion accuracy by accommodating device variations across different 
memristor crossbars. It should be emphasized that in this in situ train-
ing process, only the FC weights are updated in an analogue fashion, 
instead of retraining all the conductance weights. The detailed training 
procedure is described in Methods.

Further experiments were conducted to show the effect of conduct-
ance drift on system performance (see Methods and Extended Data 
Fig. 3). According to the test results, the reliability of multiple conduct-
ance states needs to be further investigated and improved by material 
and device engineering, which remains an active research area.

Although a memristor convolver can realize the different kernels of 
a convolutional layer in parallel under shared inputs (Fig. 2b), operat-
ing an mCNN remains time-consuming owing to the need to provide 
different patches of input during the sliding process. Considering 
that memristor-based MAC computing is more efficient and straight-
forward when used as the VMM of the FC layer, the severe speed mis-
match between the memristor FC implementation and the memristor 

convolver27 would induce sizeable efficiency loss. Replicating the same 
group of weights in multiple parallel memristor arrays appears to be a 
promising way to recognize an input image efficiently in an mCNN. Spa-
tial parallelism of the memristor convolvers could expedite convolu-
tional sliding tremendously. In practice, transferring the same weights 
to multiple parallel memristor convolvers is challenging because of 
unpredictable and inevitable device variations, conductance drift and 
state locking6–9, which would induce unavoidable and random mapping 
error distributions. This process could result in substantial system 
generalization loss and is therefore considered as a major bottleneck 
for the realization of an efficient mCNN27.

A five-layer CNN with three duplicated parallel convolvers on the 
eight memristor PEs was successfully established in our full hardware 
system. Hybrid training was again used to address the non-ideal device 
characteristics. The approach used to perform hybrid training in the 
parallel operating scheme is sketched in Fig. 4a. In the beginning, the 
ex situ trained weights were transferred to all eight memristor PEs. 
Specifically, the kernel weights of the C1 and C3 layers were mapped to 
three independent groups of PEs. All three parallel memristor convolv-
ers were connected to common PEs of shared FC weights. The specific 
mapping details are shown in Fig. 4a. Figure 4b, c, d shows the accuracy 
distributions of the total kernel weights (both C1 and C3 layers) after 
the weight transfer with respect to the first, second and third groups of 
PEs. It is clear that inevitable mapping errors exist in each group. The 
subsequent in situ training of the FC weights (see Methods for details) 
compensates for the device imperfections naturally. We ran 100 rounds 
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e, Evolution of experimental FC weight distributions (120 × 16) before (top) and 
after (bottom) hybrid training. f, Distribution of conductance-weight changes 
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(that is, 300 batches) to reach a stable recognition accuracy. Figure 4e 
illustrates the transition of the FC conductance weights before and after 
the in situ training, and Fig. 4f presents the related distribution of the 
change in FC weights. After the in situ training of the FC memristors, 
the error rate decreased accordingly. Figure 4g shows that the error 
rates with respect to the memristor PE groups G1, G2 and G3 decreased 
from 4.79%, 6.60% and 6.20% to 3.41%, 4.86% and 3.86%, respectively 
(see Extended Data Fig. 4 for results on the training set). By dividing 
one input into three fraction regions uniformly from top to bottom, 
the parallel memristor convolvers could accelerate the forward process 
on a single image. The three convolvers operated on their associated 
input parts simultaneously, and their outputs were fed together into 
the FC layer to complete the classification. The experimental results 
show that hybrid training could boost the recognition accuracy on 
the 10,000 test images from 93.86% to 95.83%. Moreover, we carefully 
evaluated the hardware performance of memristor-based neuromor-
phic computing using the experimental data (see Methods, Extended 
Data Fig. 5 and Extended Data Tables 1, 2). The performance benchmark 
of the memristor-based neuromorphic computing system shows 110 
times better energy efficiency (11,014 GOP s−1 W−1; 1 GOP = 109 opera-
tions) and 30 times better performance density (1,164 GOP s−1 mm−2) 
compared with Tesla V100 GPU27. It should be mentioned that some 
necessary functional blocks (such as the pooling function, the activa-
tion function, and the routeing and buffering of data between different 
neural-network layers) were not considered in the comparison. These 
blocks could be integrated monolithically with the memristor arrays 
in the future and accounted for in the energy efficiency calculation.

These findings suggest that the parallel memristor convolvers 
are highly efficient in achieving a high recognition accuracy while 
greatly accelerating the mCNN. In addition, the method of replicating 
the same kernels to different memristor convolvers could be scalable 
to larger CNN models to boost the parallel computing efficiency. The 
associated expenditure of chip area could be minimized in the future 
by employing high-density integration of memristors32,33. A standard 
residual neural network, ResNET-5611, with a compact memristor model 
was explored on the CIFAR-10 database and exhibited only a slight 
accuracy drop of 1.49% compared with the software baseline of 95.57% 
(see Methods and Extended Data Fig. 6).

Here, we proposed a hybrid training method to maintain high training 
efficiency and accuracy in a multiple-crossbar memristor CNN system. 
We should mention that although a small subset of the training data 
is sufficient in hybrid training, additional memory or data-transfer 
modules might be required. Moreover, a higher weight quantization 
precision is needed to fully recover the system accuracy, but at the cost 
of more hardware resources. Meanwhile, the system performance could 
be further enhanced by optimizing the peripheral circuits—especially 
the analogue-to-digital converter (ADC) blocks—and improving device 
reliability.

In summary, we have experimentally demonstrated a complete 
mCNN with hybrid training and parallel computing on multiple mem-
ristor arrays. The hybrid-training method is a generic system-level 
solution that accommodates non-ideal device characteristics across 
different memristor crossbars for various neural networks, regardless 
of the type of memristor device. The parallel convolution technique, 
which replicates weights to multiple memristor arrays, is proposed 
to eliminate the throughput gap between memristor-based convolu-
tional computation and fully connected VMM. Generally, this technique 
could be extended to other memristor-based neuromorphic systems 
to efficiently boost their overall performance. The benchmark of our 
memristor-based neuromorphic computing system shows more than 
two orders of magnitude better power efficiency and one order of 
magnitude better performance density compared with Tesla V100 GPU. 
We expect that the proposed approach will enable the development of 
more powerful memristor-based neuromorphic systems.
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Methods

Fabrication of 1T1R memristor array
The fabricated memristor array has a 1T1R structure (see Supplemen-
tary Information) in which the memristor stacks are TiN/TaOx/HfOx/
TiN. This array has a high operation speed of ~10 ns, a high yield (99.99%) 
and robust endurance performance.

All transistors and major metal interconnections and vias are fabri-
cated in a standard CMOS foundry. The technology node is 130 nm. The 
back end of line—that is, the procedure used to complete the memris-
tor stacks and the remaining top metal interconnections and vias—is 
processed in the laboratory. The bottom electrode layer of TiN, the 
switching layer of HfOx, the capping layer of TaOx and the top electrode 
layer of TiN are deposited sequentially after receiving the wafers from 
the foundry. The capping layer is used as a thermally enhanced layer34 to 
modulate the distribution of the electric field and heat in the switching 
layer for improved device behaviour. Afterwards, a lithographic process 
is adopted to form isolated 0.5 μm × 0.5 μm memristor stacks. Then, 
the SiO2 dielectric is added and polished. The final steps of etching the 
vias, depositing aluminium and shaping the remaining interconnection 
patterns are performed to complete the fabrication process.

Structure of memristor array
A PE chip (Fig. 1b) integrates on-chip encoder circuits and a 128 × 16 
1T1R memristor array (see Supplementary Information). The memristor 
array is constructed by connecting the top electrodes of 128 memris-
tor devices on the same column (that is, bit line) and the 16 transistor 
sources on the same row (that is, source line). The transistor gate ports 
facilitate fine memristor-conductance modulation by controlling the 
device’s compliance current with a specific applied gate voltage. The 
gates in a row are connected to the same line (that is, word line), which 
is parallel to the source line. This memristor array acts as a pseudo-
crossbar of two-port memristors by operating all transistors in the 
deep-triode region.

Measurements of multi-level conductance states
To measure the reliability of multi-level conductance (see Fig. 1c) in 
the array, we used a closed-loop writing method with identical SET and 
RESET pulses. During the test, we supplied the programming pulses 
to 1,024 randomly chosen memristors from the array to reach 32 indi-
vidual conductance targets. These target states were distributed within 
the switching window from 2 μS (that is, 0.4 μA at 0.2-V read voltage) 
to 20 μS (that is, 4 μA at 0.2-V read voltage) with a uniform interval 
of 0.58 μS (that is, 116 nA at 0.2-V read voltage). For any desired con-
ductance state, such as It at a 0.2-V read voltage, we established the 
maximum programming pulse number to be 500. In addition, we set 
the defined target margin parameter ΔI to be ±50 nA. When writing an 
individual cell to this conductance It from any initial state, we continu-
ously applied operating pulses up to the maximum pulse number, and 
the real-time conductance value was sensed as Iread at a 0.2-V read volt-
age after each programming pulse. If Iread was within the desired range, 
from It − ΔI to It + ΔI, the procedure ended successfully. Otherwise, a 
subsequent SET or RESET pulse was applied accordingly (see Supple-
mentary Information). This entire process was conducted repeatedly 
over the chosen memristors for the 32 conductance targets. The low-
conductance switching range and succinct operation with identical 
programming pulses could be used to simplify the system design and 
achieve low-power monolithic integration.

Structure of the five-layer CNN
As shown in Fig.  2a, a C1 layer measuring 26  ×  26  ×  8 
(weight × height × depth) is acquired after convolution with kernel 
weights measuring 1 × 3 × 3 × 8 (depth × weight × height × batch). The 
result is subsampled by a pooling layer (S2), that uses a 3 × 3 max-
pooling operation over the input with a sliding stride of 3. Then, a C3 

layer is formed with 12 stacked feature maps after convolution with 
the 8 × 3 × 3 × 12 kernels. Another pooling layer (S4, 4 × 4 × 12) is subse-
quently formed using a 2 × 2 max-pooling operation with a stride of 2. 
Then, the expanding 192-element vector is passed into the FC layer to 
obtain the final 10 probability outputs, determining the class to which 
the input belongs. The inset (dashed box) clarifies how to map the total 
weights of different layers to memristor PEs of the hardware system. 
In the experimental demonstration, 9 of 16 memristors in a row were 
used to realize a 3 × 3 kernel, and the residual cells remained unused. 
Hence, the 1 × 3 × 3 × 8 kernel weights of the C1 layer required 16 dif-
ferential rows of memristors (PE1), and the 8 × 3 × 3 × 12 kernel weights 
of the C3 layer required 192 differential rows of memristors (PE1 and 
PE3). Owing to the limited number of memristors per row (that is, 16), 
we split the total 192 weights connected to an output neuron in the 
FC layer into 24 differential rows and gathered all the corresponding 
currents of the 12 positive weight rows and 12 negative weight rows 
(see Supplementary Information). Thus, we were able to map the total 
FC weights to PE5 (120 rows) and PE7 (120 rows) to carry out the equiva-
lent VMM of the FC layer.

mCNN demonstration
A typical CNN model is created by stacking convolutional and pooling 
layers repeatedly in series, followed by one or two FC layers at the end. 
Here we implemented a complete five-layer CNN with our memristor-
based hardware system to recognize MNIST handwritten-digit images. 
The CNN model employed is shown in Fig. 2a. The model contains 
two convolutional layers, two pooling layers and one FC layer. The 
max-pooling and ReLU (rectified linear unit) activation functions are 
employed. The images in this dataset are categorized into 10 classes 
numbered 0 to 9. The input layer has 784 neurons, which is consist-
ent with the number of pixels in the 28 × 28 input image. There are 
eight 3 × 3 kernel weights for the first convolutional layer (C1 layer in 
Fig. 2a) and twelve 3 × 3 × 8 kernel weights for the second convolutional 
layer (C3 layer in Fig. 2a). The convolutional operation is conducted 
by calculating the weight sums between the shared local kernel and 
the generated input patch of the input layer during continuous slid-
ing with a fixed stride step. This operation could be decomposed into 
parallel MAC operations, which are naturally amenable to a memristor-
based in-memory-computing architecture. The input patch is unrolled 
into a nine-dimensional vector. The hardware system then drives nine 
channels of pulses accordingly to be supplied to nine bit lines simul-
taneously. A weight is represented by two differential 1T1R memristor 
conductances, and thereby a kernel is mapped throughout to the cor-
responding positive and negative weight rows. The difference in the 
cumulative flowing currents through these two related source lines is 
precisely the desired weighted sum of the kernel weights and the input 
patch. The elements of the second pooling layer (S4 layer in Fig. 2a) are 
flattened and expended as a 192-dimensional vector to be passed into 
the last FC layer, and then the weighted-sum values are fed as the input 
of the softmax function to compute the classification probability. In 
this manner, the system leads to a map from the original digit image 
to the ten output probabilities of the last layer. Each output neuron 
is associated with a defined digital class. The largest among the out-
puts indicates that the CNN classifies the input image to the matching 
category accordingly. The associated pooling and ReLU activation 
functions, as well as the update-calculating modules (such as those 
computing softmax outputs and weight gradients), were realized by 
running the codes on ARM cores.

Hybrid training on a subset of the training images
We trained the five-layer CNN model in Python and reached 97.99% 
recognition accuracy on the test set. The extracted memristor compact 
model was then used to validate that in situ learning of the FC conduct-
ance weights is generally adequate for tolerating device imperfections. 
After transferring the weights, the recognition accuracy dropped from 
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97.99% to 95.63% owing to the non-ideal memristor characteristics. 
Afterwards, all possible combinations of different layers of the weights 
were tuned—that is, we tried to train the FC weights only, the weights 
of C1 only, the weights of C3 only, the weights of the FC layer and the 
C3 layer together, etc. Five epochs of measurements were conducted 
on the entire training set for the arch trial. As shown in Extended Data 
Fig. 4b, tuning the FC conductance weights only is most efficient for 
regaining a remarkable generalization result. Essentially, this approach 
guarantees a high recognition accuracy and simplifies the original end-
to-end training flow by skipping the backward propagation.

Furthermore, we experimentally validated that only a small subset 
of the training data is sufficient to recover the initial system accuracy 
using hybrid training, which helps to minimize the hardware resources 
needed for fetching training data. A five-layer CNN (shown in Fig. 2a) 
was employed to demonstrate that only 10% of the training dataset is 
enough to regain the high recognition accuracy of the system. Similarly 
to the experimental procedure, the trained weights were first trans-
ferred to the memristor PEs, and during the transfer some mapping 
errors were intentionally added by replacing 10% of the target weights 
with random values; accordingly, the recognition accuracy was reduced 
to 80.66%. Then 5,500 training images were randomly chosen from 
the total training dataset (that is, 10% of the 55,000 training images) 
to update the weights of the FC layer. After performing hybrid training 
as described in the main text, the accuracy was increased up to 94.40% 
after ten training epochs. To prove the robustness of our hybrid train-
ing technique, the experiment was conducted two more times, and the 
result is shown in Extended Data Fig. 6c.

Furthermore, a typical ResNET-56 model was used to validate that 
a small subset of the total training dataset is adequate for recovering 
the high initial accuracy of the system using hybrid training. The ini-
tial accuracy achieved using software was 95.57% (training with 32-bit 
single-precision floating-point weights), which was degraded to 89.64% 
after the quantization using 15-level weights. Subsequently, the quan-
tized weights were mapped to the memristor arrays with the established 
device model in the weight-transfer stage, and the recognition accuracy 
dropped accordingly to 79.76%. Afterwards, we evaluated the system 
accuracy after hybrid training using 3% of the total training dataset, 
that is, 1,500 images from a total of 50,000 training samples. During the 
simulation, ten trials were made. The final result is plotted in Extended 
Data Fig. 6d, which depicts the recognition accuracy associated with 
the key phases of the whole simulation process. It was found that a 
small subset (3%) of the training data is enough to guarantee a high 
recognition accuracy (92%)—a 3.57% precision decline against the soft-
ware result. This simulation result is consistent with the experimental 
results described above.

The 15-level conductance weight
A 4-bit weight is generally sufficient to achieve a high recognition accu-
racy for CNNs31,35. In this work, an approximate 15-level fixed-point 
weight was adopted as the differential conductance of a pair of 8-level 
memristors. The smaller number of conductance states needed within 
the switching window leads to faster weight transfer because a larger 
target margin is permitted in the closed-loop writing. Writing an arbi-
trary 15-level fixed-point number to a differential pair of memristors 
obviously calls for a consistent ability to distinguish among eight con-
ductance states in each device. In addition, such writing requires that 
these states be separated within the switching window over the same 
interval. During the corresponding experiment, the conductance was 
programmed from 2.5 μS (0.5 μA at a 0.2-V read pulse) up to 20 μS (4 μA 
at a 0.2-V read pulse) with a constant step of 2.5 μS. The equivalent 
15-level weight of the memristor pair was thus referred to the 15 indi-
vidual differential conductance values that were uniformly distributed 
from negative 17.5 μS (2.5 μS–20 μS) to positive 17.5 μS (20 μS–2.5 μS). 
Moreover, the effect of read disturbance on the 15-level conductance 
weights after applying 106 read pulses (0.2 V) is investigated in Extended 

Data Fig. 7. The experimental data from the array-level tests show that 
the read operations with the 0.2-V pulse do not disturb the conductance 
states markedly or systematically.

Estimation of number of programming pulses and 
programming currents
It is critical to assess the required number of programming pulses in 
the closed-loop programming system to benchmark the system per-
formance. To estimate the number of programming pulses required 
to stably converge the memristor to a desired conductance state, we 
randomly selected 24 rows of 1T1R memristor devices and programmed 
them to high conductance states, that is, >20 μS (4.0 μA at a 0.2-V read 
pulse). Afterwards, we divided these devices to eight groups, each with 
three rows. These eight groups of memristors were correspondingly 
written to eight different conductance states, from 0.5 μA to 4.0 μA 
with a uniform interval of 0.5 μA under a read voltage of 0.2 V. The error 
margin was set as ±100 nA for the eight states. Then the required pulse 
numbers were analysed statistically on the basis of the measured data, 
and they are shown in Extended Data Fig. 8a, b.

Even though the test only provides a rough estimation on the required 
number of programming pulses, it indicates that it strongly depends 
on the gap between the starting conductance and the desired state. 
The larger the gap is, the more pulses are needed. Besides, a higher 
programming resolution—for example, a greater number of required 
quantized conductance states within the switching window or a smaller 
desired error margin—would also require a larger number of pulses.

In addition, writing currents are crucial for system design, especially 
for the calculation of the system energy. However, the programming 
currents cannot be deduced directly based on the reading currents 
and writing voltages owing to the nonlinear current–voltage curve. 
To estimate the programming currents accurately, we swept the d.c. 
voltage on a single 1T1R cell to measure the write current.

The result is shown in Extended Data Fig. 8c, d. The SET current is 
around 60 μA at 1.5 V and the RESET current is around 45 μA at −1.2 V. 
Both voltages are smaller than those measured during the pulse pro-
gramming process in the array (that is, 2.0 V for SET pulse and −1.8 V 
for RESET pulse). This is because the 50-ns pulse width used for pulse 
programming is much shorter than the voltage duration in the d.c. test.

Evaluation of recognition accuracy
Although we have successfully demonstrated the mCNN using paral-
lel operations, the test system crashes easily for long running periods 
owing to unstable interface connections—for example, the UART inter-
face between the upper computer and lower computer and the FMC 
connector between the ZC706 board and the customized PE board 
(Supplementary Information). Besides, the specific implementation of 
the test system—such as the quantity and speed of the commercial ADC 
chips—is not optimized for a high-performance design. To facilitate a 
reliable accuracy analysis within a stable connection period, in this 
study the conductance of each memristor in different PEs is written 
first. Then, the current of each memristor is sensed, and this value is 
consequently used to calculate the recognition accuracy using the 
ARM core of the test system. The computation process is similar to 
that realized by the hardware.

Learning and tuning of FC weights
During the second phase of hybrid training, we adopted in situ learn-
ing to adjust the FC memristor weights. A stochastic gradient descent 
(SGD)10 with a batch size of 100 was used. Even though this mini-batch 
SGD technique may require extra memory resources to store the inter-
mediate results, it could increase the converging speed and mitigate 
the overfitting issue. In addition, the memory overhead could be mini-
mized by using the proposed hybrid training method to update the FC 
weights only and eliminate the demand for storing the intermediate 
results of all convolutional layers.



For a single iteration cycle, the 100 images drawn from the 55,000 
training images were fed into the mCNN and processed from the initial 
to the final output layer. Then, the gradients of the objective function 
(here, the cross-entropy loss function) with respect to the FC weighted-
sum outputs were determined using the softmax probabilities and the 
associated true image labels. Later, the quantitative updates of the 
FC weights were calculated from the intermediate FC inputs and the 
gradients as follows:

V δW ηΔ = ∑ × (1)
i

i i
=1

100

Here, the learning rate η is a constant; ΔW describes the desired updates 
of the weight matrix; Vi is the intermediate 192-dimensional column vec-
tor injected into the FC layer; δi is the calculated ten-dimensional row 
vector representing the objective derivatives of the FC outputs; and i 
represents the image index in the batch of 100 images. The accumulated 
weight updates determine the conductance changes that are ultimately 
needed on the basis of the following threshold learning rule36:
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where ΔWm,n represents the update cell at the cross point of row m and 
column n in the weight-update matrix, and Th represents the prede-
fined threshold value used to determine whether the corresponding 
memristor needs to be programmed. In this study, Th was equal to 1.5 μS 
(that is, 0.3 μA at a 0.2-V read pulse). This threshold learning rule tends 
to reduce the number of programming operations by filtering out the 
original tiny updates, and results in training acceleration and energy 
saving. Then, parallel programming of the FC memristors could be 
conducted row by row24 to achieve the desired updates accordingly. 
The closed-loop writing method was introduced to circumvent the 
nonlinear and asymmetric conductance tuning issue, which could be 
addressed by exploring new basic weight units27 and programming 
schemes4. Alternatively, if the device performance (for example, the 
linearity and symmetry) could be further improved, faithful in situ 
updating could be used with the SGD updating method. This could 
be more energy- and latency-efficient by encoding the residual error 
from the output side and the input data from the input side to the cor-
responding programming pulses directly.

Degradation of conductance weight with time
In hybrid training, the kernel weights were programmed only during 
the weight-transfer stage. Thus, we set up this experiment by writing 
all the convolutional kernel weights onto two memristor PEs. After 
programming all the conductance weights smoothly, we read out these 
weights to assess how the conductance weights evolved within 30 days.

Extended Data Fig. 3a illustrates how the differential conductance 
weights (represented by the current read at 0.2 V) drifted with time. The 
cluster of grey curves in Extended Data Fig. 3a includes the evolution 
traces of all the conductance weights, where each line represents one 
individual weight. In the foreground, three typical evolution traces of 
the conductance weights are highlighted to show the general trend. 
Because the conductance weights were quantized and programmed 
using 15 levels, we divided all the weight cells in Extended Data Fig. 3a 
to these 15 different weight levels, and obtained the mean weight values 
for each level statistically, as shown in Extended Data Fig. 3b. It can be 
seen that the 15 levels are still accessible and there is no overlapping 
between adjacent levels over time.

Extended Data Fig. 3a indicates that the majority of cells can still 
maintain the weights well, even though there are some tail cells exhibit-
ing noticeable weight drift with time. However, these tail cells could 
degrade the system accuracy, which will be discussed in the next  
section.

Hybrid training could be used to address the device reliability issue 
caused by conductance drifts to some extent, instead of adopting the 
expensive reprogramming strategy. However, the reliability of the 
multiple conductance states needs to be further investigated37 and 
improved by device and material engineering38. The performance of 
memristor-based neuromorphic systems would benefit considerably 
from the improvement of device reliability and other non-ideal device 
characteristics.

Effect of conductance weight degradation on recognition 
accuracy
By repeating the experiment described in Fig. 3, we investigated how 
the drifts of the conductance weights affect the system recognition 
accuracy after hybrid training. The inference accuracy and conduct-
ance weights were recorded at 10, 30, 60, 90 and 120 min after hybrid 
training.

Extended Data Fig. 3c illustrates how the system accuracy changes 
during the experiment. Similarly to Extended Data Fig. 3a, in Extended 
Data Fig. 3d we plot the state evolution curves of all the involved 
weights, including the convolutional kernels and the weights of the FC 
layer, and three typical lines. Most of the weight states are maintained 
well within the first 2 h after hybrid training; however, the conductance 
drifts of the tail cells lead to apparent accuracy degradation.

Training process in parallel memristor convolvers
After transferring the weights, three fetched batches of training images 
were passed into the three convolver copies separately. By applying the 
input signal as described in the previous section, we captured three 
independent batches of interim output of the S4 layer and organized 
them as the input to the FC layer in a pipeline fashion. The training 
scheme sets the constraint that a batch of intermediate outputs will 
not be supplied as input until the previous batch has been used to cal-
culate the desired weight updates and the corresponding FC memristor 
conductances have been well tuned. The desired updates of the FC 
weights with respect to the first input batch were calculated according 
to equation (1), and the relevant memristor conductances were modu-
lated following the threshold learning rule of equation (2). Then, the 
FC conductances were updated after inputting the second input batch 
based on the well tuned FC weights of the previous phase. Afterwards, 
the third batch was used to tune the FC conductance weights sequen-
tially. During this updating stage, another three batches were drawn 
from the training database and fed into the unoccupied memristor 
convolvers in parallel. These operations were repeated until the system 
converged to a stable recognition accuracy.

Benchmarking of system metrics
We evaluated the hardware performance of the memristor-based neu-
romorphic computing system using the experimental data. Based on 
the calculation results, we can conclude that the system can achieve 
110 times better energy efficiency and 30 times better performance 
density compared with Tesla V100 GPU.

To benchmark the performance of the memristor-based neuromor-
phic computing system, we propose a neural processing unit architec-
ture (shown in Extended Data Fig. 5) corresponding to the structure 
in Fig. 1a. It consists of multiple memristor tiles and each tile contains 
four memristor cores. The memristor core comprises one 128 × 128 
memristor array and all the essential peripheral circuits, including 
drivers, multiplexer (MUX), MUX controller, sample-and-hold blocks 
and ADCs. Using the macro core, the typical energy efficiency and 
performance density are assessed by combining the experimental 
data (measured from the fabricated memristors at a 130-nm technol-
ogy node) and simulation data obtained with the simulator XPEsim39.

In the memristor macro core, we maximize the computing parallel-
ism by connecting two sample-and-hold blocks (S & H groups 1 and 2 in 
Extended Data Fig. 5) to each column of the array. Every four columns 
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share one common ADC converter to save chip area and power. When 
applying a 1-bit read pulse to all rows at 20 MHz, one of the S & H groups 
is turned on and is connected to the source lines in parallel to convert 
the accumulated current to voltage. During the next 1-bit read period, 
the S & H blocks are redirected to another S & H group. Meanwhile, at 
the beginning of this read phase, the stable voltage signals of the previ-
ous S & H group are passed to the ADC block through the control of the 
MUX-based data path, where every four stable voltages are converted 
in turn to a digital signal by the shared ADC at the MUX. The 8-bit ADC 
completes four conversations during the 1-bit inference stage and 
consumes 2.55 pJ of energy for each conversion. In this manner, there 
is no idle period for the ADCs and the input pulses are continuously 
fed into the array.

The detailed metrics, including the energy, latency and area of each 
block, are listed in Extended Data Table 1, which indicates the system 
performance for an input of a 1-bit read pulse (0.2 V, 50 ns). In Extended 
Data Table 1, the memristor-related metrics are evaluated with the 
measured memristor (130 nm technology node) characteristics. The 
parameters associated with the other peripheral circuitry blocks are 
extracted using the simulated circuits at the 65-nm technology node, 
except for the S & H block40 and the 8-bit ADC block41. When inferenc-
ing with a 0.2-V, 50-ns read pulse and considering all the 32 ADCs and 
other circuitry blocks, the energy consumption for 1-bit computing is 
371.89 pJ, and the total occupied chip area is 63,801.94 μm2/90.69% =  
0.0704 mm2 (the area efficiency is 90.69% for the layout of the macro 
blocks). Hence, we can assess the metrics of the memristor-based 
neuromorphic computing system when inputting an 8-bit integer by 
evaluating the performance, power, area, energy efficiency and per-
formance density, as shown in Extended Data Table 2.

From the above calculations, we obtained an energy efficiency of 
11,014 GOP s−1 W−1 and a performance density of 1,164 GOP s−1 mm−2. 
Compared with the metrics of Tesla V100 GPU27 (that is, energy effi-
ciency of 100 GOP s−1 W−1 and performance density of 37 GOP s−1 mm−2 
for 16-bit floating-point number computing), the memristor-based 
neuromorphic computing system shows roughly 110 times better 
energy efficiency and 30 times better performance density. It should 
be mentioned that some necessary functional blocks—such as the pool-
ing function, the activation function, and the routeing and buffering of 
data between different neural-network layers—were not considered in 
the comparison. Our system performance could be further improved by 
using more advanced technology nodes and optimizing the computing 
architecture and peripheral circuits.

Furthermore, in Extended Data Table 1, we break down the power 
consumption of each circuitry block in the macro core during the 
1-bit inference period. The ADC accounts for 14.4 times the power of 
the memristor array; however, this number is expected to decrease 
when the memristor array size increases. For example, the ADC blocks 
(52 mW) would only account for 1.8 times the power of a 1,024 × 1,024 
memristor array (29 mW). This result suggests that both the array size 
and the ADC optimization should be carefully considered to achieve the 
best computing efficiency of memristor-based neuromorphic systems.

Scalability demonstration using the ResNET model and the 
CIFAR-10 database
Replicating the same kernels to different memristor arrays is a crucial 
approach to improving the efficiency of memristor-based convolvers. 
This replicating method could mitigate the speed mismatch between 
the convolutional layer and the FC layer, and overcome the difference in 
the amount of convolution operations among different convolutional 
layers. In practice, we can duplicate a certain part of the kernels to real-
ize efficient acceleration. For example, the first convolutional layer in a 
CNN normally contributes the greatest number of sliding convolutional 
operations because it has the largest input size; therefore, it causes 
the largest convolutional computing latency compared with the other 
layers. In the respect, it is reasonable to replicate only the kernels on 

the first convolutional layer. Further studies are required to optimize 
the replicating strategy in the architecture design to yield the desired 
system performance.

To validate that the approach of replicating the same kernel to dif-
ferent memristor replicas, combined with the hybrid training method, 
is scalable to larger networks in the presence of intrinsic device vari-
ability, a standard residual neural network, ResNET-56, was tested on 
the CIFAR-1042 database. We used the compact model incorporating 
the device variability to simulate the real device performance. Taking 
the programing error into consideration, a Gaussian distribution was 
employed to model it as δ [nA] ~ N(0 nA, 108 nA). Here δ is the program-
ming error compared to the target conductance, and N(μ, σ) denotes a 
Gaussian distribution with mean value μ and standard deviation σ. The 
statistical parameters were extracted from the measurement results. 
During the simulation, the memristor was programmed at eight dif-
ferent levels during the weight-transfer stage. We then realized the 
equivalent 15-level weight by the differential technique as in the experi-
ments. The kernels in the first convolutional layer were replicated into 
four copies of memristor arrays in the ResNET-56 model. Theoretically, 
this ResNET-56 model requires 782 memristor arrays with a size of 
144 × 16 to implement all the weights.

The initial accuracy achieved by the software was 95.57%, which 
was degraded to 89.64% after the quantization of the 15-level weights. 
Subsequently, the quantized weights were mapped to the memris-
tor arrays in the weight-transfer stage, and the recognition accuracy 
further decreased to 80.06%. However, after the in situ training of the 
FC layer, the accuracy ultimately recovered to 94.08%—that is, a slight 
degradation of 1.49% compared with the baseline of 95.57%, as shown 
in Extended Data Fig. 6a. Extended Data Fig. 6b presents the error rates 
for the replicated G1, G2, G3 and G4 groups, which decreased from the 
initial values of 20.24%, 19.83%, 19.58% and 19.84% to 6.11%, 5.84%, 5.87% 
and 6.34%, respectively.

Data availability
The datasets that we used for benchmarking are publicly available10,42. 
The training methods are provided in refs. 10,36. The experimental setups 
are detailed in the text. Other data that support the findings of this study 
are available from the corresponding author upon reasonable request.

Code availability
The simulator XPEsim used here is publicly available39. The codes used 
for the simulations described in Methods are available from the cor-
responding author upon reasonable request.
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Extended Data Fig. 1 | Cumulative probability distribution of memristor 
conductance for the remaining seven 2,048-cell arrays. The red circles 
highlight abnormal data points, which deviate from their target conductance 
ranges owing to device variations. a, The 32-level conductance distribution on 
an entire 2,048-cell array. b–g, Conductance distributions for the first 32 rows 

of memristors (namely, 512 devices) for each of the remaining 2,048-cell arrays. 
A small number of writing errors were observed during the programming 
procedure (red circles), which could be attributed to device variations. These 
results show good consistency with Fig. 1c.



Extended Data Fig. 2 | Input patch set generated during the sliding process 
and input waveforms during the convolution. a, Input nine-dimensional 
vectors unrolled from the input 3 × 3 patch set. xm_n indicates the relevant pixel 
at the crossing of row m and column n. The input patches are generated during 
the sliding convolutional process over the input feature planes and are 
subsequently injected into the memristor weight array. For a specific input 
vector, each element is encoded as the corresponding input pulse applied on 
the associated bit line. The red box indicates the current input vector, in 
agreement with the case illustrated in b. b, Input waveform sample in a 
memristor-based convolutional operation. Each element (an 8-bit binary 

number) in the input vector is encoded as sequential pulses over eight time 
intervals (t1, t2, …, t8). For a particular period tk, bit k determines whether a 0-V 
pulse or a 0.2-V pulse is used. Each ‘1’ at a certain bit location implies the 
existence of a 0.2-V read pulse in the corresponding time interval, and a ‘0’ 
indicates a 0-V read pulse. The corresponding output current Ik is sensed, and 
this quantized value is then left-shifted by k – 1. Finally, the quantized and 
shifted results with respect to the same source line over the eight time intervals 
are summed together (ISL in the inset equation). The difference between every 
two ISL values from a pair of differential source lines is considered to be the 
expected weighted-sum result.
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Extended Data Fig. 3 | Drift of conductance weights in time and associated 
degradation in system accuracy. a, Changes in the conductance weights with 
time, over 30 days after the transfer. The grey lines present the changing traces 
of all the cell weights, and the three coloured lines depict representative 
evolution trends. b, Mean weight value for the cells that belong to each of the 15 
levels according to a. The 15 coloured traces show the 15 mean-value evolution 
traces as a function of time. c, Profile of accuracy loss during the experiment. 
The overall trend of the accuracy loss indicates how the conductance weight 

drifts deteriorate the recognition accuracy over time after hybrid training. 
Compared with the initial state, the recognition accuracy increases by 0.37% at 
t = 10 min, owing to random device-state fluctuations. d, Evolution of the 
weights of the weight cells considered in c over 2 h. t0 denotes the moment 
when the hybrid training is completed. The grey lines show the changing traces 
of the states of the cells, and the three coloured lines depict representative 
evolution trends.



Extended Data Fig. 4 | Experimental accuracy of parallel memristor 
convolvers after hybrid training, and simulated training efficiency of 
different combinations of tuning layers. a, The error rate on the entire 
training set after hybrid training drops substantially compared with that 
achieved after weight transfer for any individual convolver group. The error 

rates with respect to the G1, G2 and G3 groups decrease from 4.82%, 6.43% and 
5.85% to 2.89%, 4.22% and 3.40%, respectively, after hybrid training. b, 
Simulation results for all combinations of tuning weights for different layers 
using hybrid training and the five-layer CNN.
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Extended Data Fig. 5 | Architecture of the simulated memristor-based neural processing unit and relevant circuit modules in the macro core.



Extended Data Fig. 6 | Scalability of the joint strategy. The joint strategy 
combines the hybrid training method and the parallel computing technique of 
replicating the same kernels. We show that a small subset of training data is 
sufficient for hybrid training. a, Recognition accuracies at different stages of 
the simulation process. During the simulation with ResNET-56, the kernel 
weights of the first convolutional layer are replicated to four groups of 
memristor arrays. b, After hybrid training the error rate on the test set drops 
substantially compared with that obtained immediately after weight transfer 

using each convolver group. c, The error rates drop considerably after hybrid 
training using 10% of the training data in the experiment with the five-layer 
CNN.The three experimental results show good consistency. d, Recognition 
accuracies at different stages of the simulation with ResNET-56. A high level of 
accuracy is achieved even when using 3% of the training data (1,500 training 
images) to update the weights of the FC layer. The mean accuracy for 10 trials is 
92.00% after hybrid training, and the standard deviation is 0.8%.
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Extended Data Fig. 7 | Effects of read disturbance. To investigate this effect, 
we set up this experiment by writing all the convolutional kernel weights to two 
memristor PEs. After programming all the conductance weights smoothly, we 
physically apply 1,000,000 read pulses (0.2 V) on all weight cells to see how the 
read operations disturb the weight states. a, Changes in the states of the 936 

conductance weightswhile cycling read operations. The grey lines give the 
changing traces of the states of all cells, and the three coloured lines depict 
representative evolution trends. b, Conductance evolution of eight memristor 
states during 106 read cycles. c, Distributions of weight states after 1, 105, 5 × 105 
and 106 read cycles.



Extended Data Fig. 8 | Test results of the required programming pulse 
number and programming currents. a, Average pulse number required to 
reach each target conductance state. All the initial states were programmed to 
>4.0 μA. b, Stacked histogram distribution corresponding to the data in a. c, 
Current–voltage curve obtained during a d.c. voltage sweep. RESET and SET 
currents are measured at points #1 and #3, respectively. The conditions of 

RESET and SET pulses in this study are marked by points #2 and #4, 
respectively. Point #5 labels the read current at the low-resistance state (LRS) 
and point #6 labels the read current at the high-resistance state (HRS). d, 
Typical programming parameters. The programming current is 60 μA at 1.5 V 
during the SET process and 45 μA at −1.2 V during RESET.
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Extended Data Table 1 | Detailed metrics of each circuitry module in the macro core with 1-bit input

BL, bit line; WL, word line; SL, source line.



Extended Data Table 2 | Benchmark metrics of a single macro core with 8-bit input

ops, operations.
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