
Nature | Vol 577 | 30 January 2020 | 641

Article

Fully hardware-implemented memristor
convolutional neural network

Peng Yao1, Huaqiang Wu1,2*, Bin Gao1,2, Jianshi Tang1,2, Qingtian Zhang1, Wenqiang Zhang1,
J. Joshua Yang3 & He Qian1,2

Memristor-enabled neuromorphic computing systems provide a fast and energy-
efficient approach to training neural networks1–4. However, convolutional neural
networks (CNNs)—one of the most important models for image recognition5—have
not yet been fully hardware-implemented using memristor crossbars, which are
cross-point arrays with a memristor device at each intersection. Moreover, achieving
software-comparable results is highly challenging owing to the poor yield, large
variation and other non-ideal characteristics of devices6–9. Here we report the
fabrication of high-yield, high-performance and uniform memristor crossbar arrays
for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to
improve parallel-computing efficiency. In addition, we propose an effective hybrid-
training method to adapt to device imperfections and improve the overall system
performance. We built a five-layer memristor-based CNN to perform MNIST10 image
recognition, and achieved a high accuracy of more than 96 per cent. In addition to
parallel convolutions using different kernels with shared inputs, replication of
multiple identical kernels in memristor arrays was demonstrated for processing
different inputs in parallel. The memristor-based CNN neuromorphic system has
an energy efficiency more than two orders of magnitude greater than that of
state-of-the-art graphics-processing units, and is shown to be scalable to larger
networks, such as residual neural networks. Our results are expected to enable a
viable memristor-based non-von Neumann hardware solution for deep neural
networks and edge computing.

CNNs have become one of the most important deep neural networks
(DNNs)5 and play a vital role in image-processing-related tasks, such
as image recognition11, image segmentation and object detection12.
A typical computing procedure for a CNN involves a large number of
sliding convolutional operations. In this respect, computing units that
support parallel multiply–accumulate (MAC) calculations are highly
desired. Such demand has led to the redesign of conventional comput-
ing systems to operate CNNs with higher performance and lower power
consumption, ranging from general application platforms, such as
graphics-processing units (GPUs)13, to application-specific accelera-
tors14,15. However, further improvements in computing efficiency will
ultimately be constrained by the von Neumann architecture of these
systems, in which the physical separation of memory and processing
units results in substantial energy consumption and large latency in data
shuffling between units16. By contrast, memristor-enabled neuromor-
phic computing provides a promising non-von Neumann computing
paradigm in which the data are stored, thus eliminating the cost of data
transfer1,2. By directly using Ohm’s law for multiplication and Kirchhoff’s
law for accumulation, a memristor array is capable of implementing
parallel in-memory MAC operations, leading to analogue in-memory
computing with greatly improved speed and energy efficiency3.

Studies on memristor-based neuromorphic computing have covered
a broad range of topics, from device optimization to system implemen-
tation6,17–23. Several experimental demonstrations4,24–28 related to practi-
cal applications of in-memory computing have been reported as well.
The most recent studies report the demonstrations of two-layer4 and
three-layer27 memristor multi-layer perceptronsfor image recognition
using the MNIST (Modified National Institute of Standards and Technol-
ogy) handwritten-digit database10. However, a complete CNN, which is
essential for more complex image-recognition tasks, has not yet been
demonstrated in a fully memristor-based hardware system. The reason
mainly pertains to the lack of an efficient solution for the implementa-
tion27 of a memristor-based CNN (mCNN): first, the fabricated mCNN
usually suffers from a poor yield and non-uniformity of memristor
crossbar arrays4,7,8. Second, it is difficult to achieve a performance (for
example, image-recognition accuracy) comparable to software results
owing to device imperfections, such as variations, conductance drift
and device state locking6–9. Third, the key convolutional operation in
CNNs is time-consuming because of the need to slide over different
input patches, which is usually a sequential process and results in speed
mismatch between the memristor convolver and the memristor array
for fully connected vector–matrix multiplication (VMM).

https://doi.org/10.1038/s41586-020-1942-4

Received: 25 November 2018

Accepted: 25 October 2019

Published online: 29 January 2020

1Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing, China. 2Beijing National Research Center for Information Science and Technology
(BNRist), Tsinghua University, Beijing, China. 3Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA. *e-mail: wuhq@tsinghua.edu.cn

https://doi.org/10.1038/s41586-020-1942-4
mailto:wuhq@tsinghua.edu.cn

642 | Nature | Vol 577 | 30 January 2020

Article

In this study, a complete five-layer mCNN for MNIST digit image
recognition was successfully demonstrated. The optimized material
stacks enabled reliable and uniform analogue switching behaviours
in 2,048 one-transistor–one-memristor (1T1R) arrays. With the pro-
posed hybrid-training scheme, the experimental recognition accuracy
reached 96.19% for the entire test dataset. Furthermore, replication of
the convolutional kernels to three parallel memristor convolvers was
implemented to reduce the mCNN latency roughly by a factor of 3. Our
highly integrated neuromorphic system provides a feasible solution
to substantially improve the CNN efficiency by closing the throughput
gap between memristor-based convolutional computation and fully
connected VMM.

Realizing a practical memristor-based neuromorphic computing
system usually requires the integration of multiple memristor crossbar
arrays. In general, splitting the weights into different arrays is beneficial
for parallel computing, which is increasingly needed with increasing
network scales. However, previous memristor-based demonstrations
relied on a single array4,24–26, mainly because of the challenge of produc-
ing highly repeatable arrays. The variability and non-ideal character-
istics of memristive devices are considered as substantial hurdles to
the application of neuromorphic computing7–9.

Here we propose a versatile memristor-based computing architec-
ture for neural networks, shown in Fig. 1a. The memristor cell uses
a material stack of TiN/TaOx/HfOx/TiN, and shows continuous con-
ductance-tuning capability (see Supplementary Information) in both
potentiation (SET) and depression (RESET) by modulating the electric

field and heat29. The materials and fabrication process (see Methods for
details) are compatible with the conventional CMOS (complementary
metal–oxide semiconductor) process, so that the memristor arrays can
be conveniently built in the back end of line in a silicon fab to reduce
process variations and achieve high reproducibility. The fabricated
crossbar arrays exhibit uniform analogue switching behaviours under
identical programming conditions. Hence, a multiple-memristor-array
hardware system (see Supplementary Information) was built using a
customized printed circuit board (PCB) and a field-programmable
gate array evaluation board (ZC706, Xilinx). As the system sche-
matic shows, the system mainly consists of eight memristor-based
processing elements (PEs). Each PE has its own integrated 2,048-cell
memristor array. Each memristor is connected to the drain terminal
of a transistor, namely, in a 1T1R configuration (see Supplementary
Information). The core PCB subsystem with eight memristor array chips
is presented in Fig. 1b. Each memristor array (right inset of Fig. 1b) has
an assembly of 128 × 16 1T1R cells. There are 128 parallel word lines and
128 source lines horizontally, and 16 bit lines vertically (see Methods for
details). This array exhibits remarkably repeatable multi-level conduct-
ance states, as shown by the test results in Fig. 1c and the measured data
from the remaining 2,048-cell arrays in Extended Data Fig. 1. Figure 1c
shows the distribution of 1,024 memristors in 32 different conductance
states, where all the curves are separated without any overlap. Identical
SET and RESET pulse trains with a pulse width of 50 ns were employed in
the closed-loop programming24 operations to reach a certain conduct-
ance state. The measurement flow is described in Methods.

Shared blocks

PE chip

DRAM block ARM core Con�gure
circuits

Voltage
generator

Accumulator

a

b c

Activation
function

Pooling
function

Calculating
updates

Group of eight memristor PE units

Input registers
and multiplexer

Output registers
and multiplexer

Control unit

PE chip
(1T1R array and

on-chip decoder)

ADC
and

multiplexer

Shift
and
add

Current (μA)

C
um

ul
at

iv
e

p
ro

b
ab

ili
ty

 (%
)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

99.9

99.0

90.0

50.0

10.0

1.0

0.1

200 μm

and multiplexer

Fig. 1 | Memristor-based hardware system with reliable multi-level
conductance states. a, Schematic of the system architecture with eight
integrated memristor PE units and other functional blocks. DRAM, dynamic
random-access memory; ARM core, control unit with ARM (Acorn RISC
Machine) architecture. b, Left, photograph of the integrated PCB subsystem,
also known as the PE board. Right, image of a partial PE chip consisting of a
2,048-memristor array and on-chip decoder circuits. c, Cumulative probability

distribution of 1,024 cells with respect to 32 independent conductance states.
The conductance is equivalently represented by the read-out current under a
0.2-V voltage pulse. For programming, the SET conditions were VWL = 1.8 V for
the word-line voltage, VBL = 2.0 V (50 ns pulse) for the bit-line voltage and
VSL = 0 V for the source-line voltage; the RESET conditions were VWL = 4.7 V,
VBL = 0 V and VSL = 1.8 V (50 ns pulse).

Nature | Vol 577 | 30 January 2020 | 643

As shown in Fig. 2a, a five-layer CNN was constructed on a memristor-
based hardware system to recognize MNIST handwritten-digit images.
The detailed data flow in the CNN and the corresponding memristor
mapping are described in Methods.

Realizing memristor-based convolutional operations requires per-
forming sliding operations with various kernels. Memristor arrays are
highly efficient in achieving parallel MACs under shared inputs for
different kernels22. Figure 2b shows a typical convolution example at a
particular slipping step, and Fig. 2c reveals the associated events in the
1T1R memristor array. The input value is encoded by the pulse number
according to its quantized bit number (Extended Data Fig. 2). A signed
kernel weight is mapped to the differential conductance of a pair of
memristors. In this manner, all the weights of a kernel are mapped to
two conductance rows: one row for positive weights with positive pulse
inputs and the other for negative weights with equivalent negative
pulse inputs. After inputting the encoded pulses into the bit lines, the
output currents through the two differential source lines are sensed

and accumulated. The differential current is the weighted sum corre-
sponding to the input patch and the chosen kernel. Different kernels
with different weights are mapped to different pairs of differential
rows, and the entire memristor array operates MACs in parallel under
the same inputs. All the desired weighted-sum results are obtained
concurrently.

In typical CNN training, it is necessary to propagate the objective deriva-
tive backwards with respect to the last outputs, to determine all weight
updates10. This task requires highly complex operations to apply encoded
read pulses to source lines from back to front and layer by layer. Further-
more, it is challenging to train a complicated memristor DNN, owing to
non-ideal device characteristics, such as nonlinearity and asymmetric
conductance tuning6,27. In contrast to the pure in situ training solution,
the ex situ training method appears to be a shortcut that takes advantage
of existing high-performing parameters. However, inevitable hardware
imperfections, such as defective devices and parasitic wire resistance and
capacitance, would blur the weights and degrade the system performance

Convolutional kernel
1 × 3 × 3 × 8

a
Convolutional kernel

8 × 3 × 3 × 12
Pooling

3 × 3
FC weights

192 × 10
Pooling

2 × 2

Input image
28 × 28 C1,

feature maps
26 × 26 × 8

S2,
feature maps

9 × 9 × 8

S4,
feature maps

4 × 4 × 12

S4,
expand to vector

192

FC,
output vector

10

PE1 PE3 PE5 PE7

C1, kernel 16 × 9

C3, kernel 96 × 9

FC, weights 192 × 10

Unused

b

Input image

c

Kernel i

Kernel j x2,2 x2,3 x4,3 x4,4

Kernel i

Kernel j

x2,2 x2,3 x2,4

x3,2 x3,3 x3,4

x4,2 x4,3 x4,4

wi
2

wi
3

wi
4

wi
5

wi
6

wi
7

wi
8

wi
9

wj
1

wj
2

wj
3

wj
4

wj
5

wj
6

wj
7

wj
8

wj
9

gi+
1

gi–
1

gi+
2

gi–
2

gi+
8

gi+
9

gi–
8

gi–
9

wi
1

= gi+
1

– gi–
1

gj+
1

gj–
1

gj+
2

gj–
2

gj+
8

gj+
9

gj–
8

gj–
9

wi
1

BL 1 BL 2 BL 8 BL 9

WLi+

SLi+

WLi–

SLi–

WLj+

SLj+

WLj–

SLj–

C3,
feature maps

7 × 7 × 12

Fig. 2 | Five-layer mCNN with memristor convolver. a, Structure of the five-
layer mCNN used for MNIST image recognition, with alternating convolutional
(C1, C3) and subsampling (S2, S4) layers. The input is a 28 × 28 greyscale (8-bit)
digit image. The mapping relations between the weights of different layers and
the independent PEs are illustrated (see Methods for details). The top labels
give the kernel size (input channel depth × filter height × filter width × filter
batch size) for C1 and C3, the pooling size for S2 and S4 and the weight size for
the FC layer (input neuron number × output neuron number). The bottom
labels provide the feature map dimension (height × width × channel depth) or
the vector dimension. b, Typical convolutional case during the slipping

process. The grey box in the image confines the input patch of this sample case.
xm,n indicates the relevant pixel at the crossing of row m and column n. Kernels i
and j each have a total of 3 × 3 weights. c, The equivalent memristor convolver of
the convolutional operation in b. Throughout the entire parallel computing
process, all word lines (WL) are set to VWL = 4.5 V. The injected bit line (BL) pulses
are 0.2 V, and the source lines (SL) are clamped at 0 V. w represents the element
value in the weight matrix, and g+ and g− represent the device conductance
values for the positive and negative weights in the differential pair,
respectively.

644 | Nature | Vol 577 | 30 January 2020

Article

when transferring the ex situ learned weights to memristor conductances4.
Therefore, ex situ training normally requires prior knowledge of the hard-
ware situation and learns weights on the basis of this costly awareness using
software.

To circumvent various non-ideal device characteristics, a hybrid-
training method is proposed to implement the mCNN. The entire flow-
chart, illustrated in Fig. 3a, includes two stages. First a CNN model is
trained ex situ, and then all the determined weights are transferred to
the memristor PEs by a closed-loop writing method. In the next step,
the external input propagates forwards through the mCNN, and only
the last fully connected (FC) layer is trained in situ afterwards to tune
the memristor conductance. It should be pointed out that the proposed
hybrid learning method is different from typical transfer learning27,30.
Hybrid training aims to accommodate the device variations in the pre-
vious layers to implement the parallel mCNN efficiently through the
in situ training of the memristor weights, whereas transfer learning
typically retrains the weights of the FC layers (hereafter, FC weights)
using software to obtain knowledge on a new dataset.

Here the hybrid-training technique emphasizes the training of FC
weights to compensate for existing device imperfections, and it could
be extended as a generic system approach to address device variations
and other non-ideal device characteristics by in situ tuning of some
memristor weights. Hybrid training is applicable to a wide range of
neural network models and could be used to address non-ideal device
characteristics regardless of the specific type of memristor device.
However, it is worth mentioning that, compared with traditional ex situ
training, hybrid training requires fetching the training data to realize
in situ conductance tuning; therefore, additional memory blocks or
data-transmission modules might be required.

A memristor model is established to validate that the in situ training
of only the FC layer is generally adequate for compensating for device

imperfections and that it yields remarkable generalization results
(see Methods for details). In this manner, hybrid training uses the advan-
tages of both ex situ and in situ training, which complement each other.

To realize an mCNN with hybrid training (Fig. 3b), a model (Fig. 2a)
was trained ex situ in Python with TensorFlow on a training set contain-
ing 55,000 images. The recognition accuracy for the 10,000 test digit
images was 97.99%, which was taken as the baseline accuracy. The well
trained weights were rescaled to meet the unified memristor conduct-
ance window and quantized from 32-bit floating type to 15-level fixed-
point type (see Methods for details). Reasonable weight quantization
caused a tolerable performance degradation; for example, the 4-bit
quantization of kernel weights and 2-bit quantization of the FC weights
for a typical CNN model, AlexNet, was shown to induce a 2.60% increase
in the recognition error for ImageNet (a widely used image database
for visual object recogoniction) classification compared with the 32-bit
quantization of kernel weights and FC weights31. The quantization of
the 15-level fixed point relaxed the conductance mapping requirements
to speed up weight transfer, and ensured a high recognition accuracy
of 96.92%, close to the software baseline.

Subsequently, the quantized kernel weights of the convolutional lay-
ers and the weights of the FC layer were transferred to the correspond-
ing memristor conductance (Fig. 2a). The weight-transfer accuracy
distributions of the convolutional layers C1 and C3 and the FC layer
are shown in Fig. 3c–e. The error distributions probably arise from
device variations, conductance drift and state locking. The memris-
tor hardware system still achieves a recognition accuracy of 95.07%
(see Methods for details) on the 10,000 test images—a 2.92% accuracy
loss compared with the baseline value of 97.99%. After an epoch of 550
training iterations (a mini-batch of 100 training images was fed into the
mCNN for one iteration) on the entire training database, the recognition
error rate for the 10,000 test images decreased considerably from the

Ex situ training

Transfer the weights

Forward process

Update memristor weights of
FC layers

a

c

e

0 μA

1 μA

b

d f

Test set Training set

Initial error rate on test set, 4.93%
(after weight transfer)
Final error rate on test set, 3.81%
(after hybrid training)

5

10

15

E
rr

or
 r

at
e

(%
)

0 100 200 300 400 500 600
Iteration index

Error rate decreases by 1.12%

Weights of
convolutional layers

Weights of
FC layers

Weight transfer

Weight transfer

Weight update

UnchangedEx situ
training

Fig. 3 | Hybrid training on the mCNN. a, Flowchart of the hybrid-training
method used in this experimental demonstration. b, Diagram of the
experimental mCNN demonstration with hybrid training. First, the system
transfers the kernel weights of different convolutional layers and the 192 × 10
FC weights to the memristor PEs. Next, the system maintains the kernel weights
unchanged and updates only the FC weights through in situ training. c–e,

Distributions of weight-transfer error compared with the target values for the
kernel weights in the C1 layer (c; 8 × 9 in size), C3 layer (d; 96 × 9 in size) and FC
layer (e; 120 × 16 in size). The colour bar shows the absolute value of weight-
transfer error. f, Error-rate traces over 550 hybrid-training iteration cycles. The
green curve indicates the trend for the 55,000 training images, and the blue
curve shows the trend for the 10,000 test images.

Nature | Vol 577 | 30 January 2020 | 645

initial value of 4.93% to the final value of 3.81% (Fig. 3f). The error rate
on the training set also dropped from 4.82% to 3.21%.

In a memristor-based neuromorphic computing system, the accuracy
loss is mainly attributed to two factors: first, the presence of non-ideal
device characteristics, such as device variations, array yield problems
and device reliability issues; second, the limited precision due to weight
quantization. Even though the accuracy is not fully recovered given the
limited quantization precision, the experimental results suggest that
the hybrid-training method could effectively recover high recogni-
tion accuracy by accommodating device variations across different
memristor crossbars. It should be emphasized that in this in situ train-
ing process, only the FC weights are updated in an analogue fashion,
instead of retraining all the conductance weights. The detailed training
procedure is described in Methods.

Further experiments were conducted to show the effect of conduct-
ance drift on system performance (see Methods and Extended Data
Fig. 3). According to the test results, the reliability of multiple conduct-
ance states needs to be further investigated and improved by material
and device engineering, which remains an active research area.

Although a memristor convolver can realize the different kernels of
a convolutional layer in parallel under shared inputs (Fig. 2b), operat-
ing an mCNN remains time-consuming owing to the need to provide
different patches of input during the sliding process. Considering
that memristor-based MAC computing is more efficient and straight-
forward when used as the VMM of the FC layer, the severe speed mis-
match between the memristor FC implementation and the memristor

convolver27 would induce sizeable efficiency loss. Replicating the same
group of weights in multiple parallel memristor arrays appears to be a
promising way to recognize an input image efficiently in an mCNN. Spa-
tial parallelism of the memristor convolvers could expedite convolu-
tional sliding tremendously. In practice, transferring the same weights
to multiple parallel memristor convolvers is challenging because of
unpredictable and inevitable device variations, conductance drift and
state locking6–9, which would induce unavoidable and random mapping
error distributions. This process could result in substantial system
generalization loss and is therefore considered as a major bottleneck
for the realization of an efficient mCNN27.

A five-layer CNN with three duplicated parallel convolvers on the
eight memristor PEs was successfully established in our full hardware
system. Hybrid training was again used to address the non-ideal device
characteristics. The approach used to perform hybrid training in the
parallel operating scheme is sketched in Fig. 4a. In the beginning, the
ex situ trained weights were transferred to all eight memristor PEs.
Specifically, the kernel weights of the C1 and C3 layers were mapped to
three independent groups of PEs. All three parallel memristor convolv-
ers were connected to common PEs of shared FC weights. The specific
mapping details are shown in Fig. 4a. Figure 4b, c, d shows the accuracy
distributions of the total kernel weights (both C1 and C3 layers) after
the weight transfer with respect to the first, second and third groups of
PEs. It is clear that inevitable mapping errors exist in each group. The
subsequent in situ training of the FC weights (see Methods for details)
compensates for the device imperfections naturally. We ran 100 rounds

E
rr

or
 r

at
e

(%
)

0

2

4

6

8

Memristor PE groups

G1 G2 G3

Weight transfer Hybrid trainingg

b

c

d

0 μA

2 μA

e

f
–4 μA

4 μA

0 μA

a

PE1 PE2

PE3 PE4

PE5 PE6

C1, kernel 16 × 9

C3, kernel 96 × 9

FC, weights 192 × 10

Unused

PE7 PE8In
p

ut
 im

ag
e

b
at

ch
 a

t
i+

1
In

p
ut

 im
ag

e
b

at
ch

 a
t

i
In

p
ut

 im
ag

e
b

at
ch

 a
t

i–
1

Map kernels to �rst group of PEs

Map kernels to second group of PEs

Map kernels to third group of PEs

Output at i–1

Output
at i

Output
at i+1

Update

In
p

ut
 t

o
th

e
sh

ar
ed

FC

 la
ye

r
se

q
ue

nt
ia

lly

Shared FC weights
in common PEs

Reference
error
2.01%

–1.5 μA

1.5 μA

0 μA

6.20%

3.86%

6.60%

4.86%4.79%

3.41%

Fig. 4 | Parallel memristor convolvers with hybrid training for improving
convolutional efficiency. a, Sketch of the hardware system operation flow
with hybrid training used to accommodate non-ideal device characteristics
for parallel memristor convolvers. Three batches of input images (handwritten
digits on the left) are fed into three PE convolver groups. All the processed
intermediate data are fed into the shared FC PEs to complete the in situ tuning.
In the neural network schematic, the blue part represents convolutional layer
C1 and subsampling layer S2, and the green part represents convolutional layer
C3 and subsampling layer S4. In the PE diagram, the blue region represents the
kernels of the C1 layer and the green region represents the kernels of C3 layer.

b–d, Weight-transfer error distributions for the mapping from the ex situ-
trained kernel weights of the C1 and C3 layers onto three different groups: G1
(b), G2 (c) and G3 (d). The size of the colour map is 104 × 9. The colour bar
represents the error in the transferred current values at a 0.2-V read pulse.
e, Evolution of experimental FC weight distributions (120 × 16) before (top) and
after (bottom) hybrid training. f, Distribution of conductance-weight changes
corresponding to e. g, The error rate obtained on the test set after hybrid
training is considerably lower than that measured immediately after weight
transfer for each convolver group.

646 | Nature | Vol 577 | 30 January 2020

Article
(that is, 300 batches) to reach a stable recognition accuracy. Figure 4e
illustrates the transition of the FC conductance weights before and after
the in situ training, and Fig. 4f presents the related distribution of the
change in FC weights. After the in situ training of the FC memristors,
the error rate decreased accordingly. Figure 4g shows that the error
rates with respect to the memristor PE groups G1, G2 and G3 decreased
from 4.79%, 6.60% and 6.20% to 3.41%, 4.86% and 3.86%, respectively
(see Extended Data Fig. 4 for results on the training set). By dividing
one input into three fraction regions uniformly from top to bottom,
the parallel memristor convolvers could accelerate the forward process
on a single image. The three convolvers operated on their associated
input parts simultaneously, and their outputs were fed together into
the FC layer to complete the classification. The experimental results
show that hybrid training could boost the recognition accuracy on
the 10,000 test images from 93.86% to 95.83%. Moreover, we carefully
evaluated the hardware performance of memristor-based neuromor-
phic computing using the experimental data (see Methods, Extended
Data Fig. 5 and Extended Data Tables 1, 2). The performance benchmark
of the memristor-based neuromorphic computing system shows 110
times better energy efficiency (11,014 GOP s−1 W−1; 1 GOP = 109 opera-
tions) and 30 times better performance density (1,164 GOP s−1 mm−2)
compared with Tesla V100 GPU27. It should be mentioned that some
necessary functional blocks (such as the pooling function, the activa-
tion function, and the routeing and buffering of data between different
neural-network layers) were not considered in the comparison. These
blocks could be integrated monolithically with the memristor arrays
in the future and accounted for in the energy efficiency calculation.

These findings suggest that the parallel memristor convolvers
are highly efficient in achieving a high recognition accuracy while
greatly accelerating the mCNN. In addition, the method of replicating
the same kernels to different memristor convolvers could be scalable
to larger CNN models to boost the parallel computing efficiency. The
associated expenditure of chip area could be minimized in the future
by employing high-density integration of memristors32,33. A standard
residual neural network, ResNET-5611, with a compact memristor model
was explored on the CIFAR-10 database and exhibited only a slight
accuracy drop of 1.49% compared with the software baseline of 95.57%
(see Methods and Extended Data Fig. 6).

Here, we proposed a hybrid training method to maintain high training
efficiency and accuracy in a multiple-crossbar memristor CNN system.
We should mention that although a small subset of the training data
is sufficient in hybrid training, additional memory or data-transfer
modules might be required. Moreover, a higher weight quantization
precision is needed to fully recover the system accuracy, but at the cost
of more hardware resources. Meanwhile, the system performance could
be further enhanced by optimizing the peripheral circuits—especially
the analogue-to-digital converter (ADC) blocks—and improving device
reliability.

In summary, we have experimentally demonstrated a complete
mCNN with hybrid training and parallel computing on multiple mem-
ristor arrays. The hybrid-training method is a generic system-level
solution that accommodates non-ideal device characteristics across
different memristor crossbars for various neural networks, regardless
of the type of memristor device. The parallel convolution technique,
which replicates weights to multiple memristor arrays, is proposed
to eliminate the throughput gap between memristor-based convolu-
tional computation and fully connected VMM. Generally, this technique
could be extended to other memristor-based neuromorphic systems
to efficiently boost their overall performance. The benchmark of our
memristor-based neuromorphic computing system shows more than
two orders of magnitude better power efficiency and one order of
magnitude better performance density compared with Tesla V100 GPU.
We expect that the proposed approach will enable the development of
more powerful memristor-based neuromorphic systems.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-020-1942-4.

1. Ielmini, D. & Wong, H.-S. P. In-memory computing with resistive switching devices. Nat.
Electron. 1, 333–343 (2018).

2. Wong, H.-S. P. & Salahuddin, S. Memory leads the way to better computing. Nat.
Nanotechnol. 10, 191–194 (2015); correction 10, 660 (2015).

3. Williams, R. S. What’s next? Comput. Sci. Eng. 19, 7–13 (2017).
4. Li, C. et al. Efficient and self-adaptive in-situ learning in multilayer memristor neural

networks. Nat. Commun. 9, 2385 (2018).
5. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
6. Wu, H. et al. Device and circuit optimization of RRAM for neuromorphic computing. In

2017 IEEE Int. Electron Devices Meeting (IEDM) 11.5.1–11.5.4 (IEEE, 2017).
7. Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater.

18, 309–323 (2019); correction 18, 518 (2019).
8. Ding, K. et al. Phase-change heterostructure enables ultralow noise and drift for memory

operation. Science 366, 210–215 (2019).
9. Welser, J., Pitera, J. & Goldberg, C. Future computing hardware for AI. In 2018 IEEE Int.

Electron Devices Meeting (IEDM) 1.3.1–1.3.6 (IEEE, 2018).
10. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to

document recognition. Proc. IEEE 86, 2278–2324 (1998).
11. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc.

IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016).
12. Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: towards real-time object detection with

region proposal networks. In Advances in Neural Information Processing Systems 91–99
(NIPS, 2015).

13. Coates, A. et al. Deep learning with COTS HPC systems. In Proc. 30th Int. Conference on
Machine Learning 1337–1345 (PMLR, 2013).

14. Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing unit. In Proc.
44th Int. Symposium on Computer Architecture (ISCA) 1–12 (IEEE, 2017).

15. Chen, Y.-H., Krishna, T., Emer, J. S. & Sze, V. Eyeriss: an energy-efficient reconfigurable
accelerator for deep convolutional neural networks. IEEE J. Solid-State Circuits 52,
127–138 (2017).

16. Horowitz, M. Computing’s energy problem (and what we can do about it). In 2014 IEEE Int.
Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 10–14 (IEEE, 2014).

17. Woo, J. et al. Improved synaptic behavior under identical pulses using AlOx/HfO2 bilayer
RRAM array for neuromorphic systems. IEEE Electron Device Lett. 37, 994–997 (2016).

18. Burr, G. W. et al. Neuromorphic computing using non-volatile memory. Adv. Phys. X 3,
89–124 (2017).

19. Yu, S. Neuro-inspired computing with emerging nonvolatile memorys. Proc. IEEE 106,
260–285 (2018).

20. Choi, S. et al. SiGe epitaxial memory for neuromorphic computing with reproducible high
performance based on engineered dislocations. Nat. Mater. 17, 335–340 (2018).

21. Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale neural
network (165 000 synapses) using phase-change memory as the synaptic weight
element. IEEE Trans. Electron Dev. 62, 3498–3507 (2015).

22. Gao, L., Chen, P.-Y. & Yu, S. Demonstration of convolution kernel operation on resistive
cross-point array. IEEE Electron Device Lett. 37, 870–873 (2016).

23. Kumar, S., Strachan, J. P. & Williams, R. S. Chaotic dynamics in nanoscale NbO2 Mott
memristors for analogue computing. Nature 548, 318–321 (2017).

24. Yao, P. et al. Face classification using electronic synapses. Nat. Commun. 8, 15199 (2017).
25. Prezioso, M. et al. Training and operation of an integrated neuromorphic network based

on metal-oxide memristors. Nature 521, 61–64 (2015).
26. Sheridan, P. M. et al. Sparse coding with memristor networks. Nat. Nanotechnol. 12,

784–789 (2017).
27. Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training using

analogue memory. Nature 558, 60–67 (2018).
28. Serb, A. et al. Unsupervised learning in probabilistic neural networks with multi-state

metal-oxide memristive synapses. Nat. Commun. 7, 12611 (2016).
29. Gao, B. et al. Modeling disorder effect of the oxygen vacancy distribution in filamentary

analog RRAM for neuromorphic computing. In 2017 IEEE Int. Electron Devices Meeting
(IEDM) 4.4.1–4.4.4 (IEEE, 2017).

30. Donahue, J. et al. DeCAF: a deep convolutional activation feature for generic visual
recognition. In 2014 Int. Conference on Machine Learning 647–655 (ACM, 2014).

31. Han, S., Mao, H. & Dally, W. J. Deep compression: compressing deep neural networks with
pruning, trained quantization and huffman coding. In 2016 International Conference on
Learning Representations (ICLR) (2016).

32. Xu, X. et al. Fully CMOS-compatible 3D vertical RRAM with self-aligned self-selective cell
enabling sub-5-nm scaling. In 2016 IEEE Symposium on VLSI Technology 84–85 (IEEE,
2016).

33. Pi, S. et al. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension.
Nat. Nanotechnol. 14, 35–39 (2019).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020

https://doi.org/10.1038/s41586-020-1942-4

Nature | Vol 577 | 30 January 2020 | 647

Methods

Fabrication of 1T1R memristor array
The fabricated memristor array has a 1T1R structure (see Supplemen-
tary Information) in which the memristor stacks are TiN/TaOx/HfOx/
TiN. This array has a high operation speed of ~10 ns, a high yield (99.99%)
and robust endurance performance.

All transistors and major metal interconnections and vias are fabri-
cated in a standard CMOS foundry. The technology node is 130 nm. The
back end of line—that is, the procedure used to complete the memris-
tor stacks and the remaining top metal interconnections and vias—is
processed in the laboratory. The bottom electrode layer of TiN, the
switching layer of HfOx, the capping layer of TaOx and the top electrode
layer of TiN are deposited sequentially after receiving the wafers from
the foundry. The capping layer is used as a thermally enhanced layer34 to
modulate the distribution of the electric field and heat in the switching
layer for improved device behaviour. Afterwards, a lithographic process
is adopted to form isolated 0.5 μm × 0.5 μm memristor stacks. Then,
the SiO2 dielectric is added and polished. The final steps of etching the
vias, depositing aluminium and shaping the remaining interconnection
patterns are performed to complete the fabrication process.

Structure of memristor array
A PE chip (Fig. 1b) integrates on-chip encoder circuits and a 128 × 16
1T1R memristor array (see Supplementary Information). The memristor
array is constructed by connecting the top electrodes of 128 memris-
tor devices on the same column (that is, bit line) and the 16 transistor
sources on the same row (that is, source line). The transistor gate ports
facilitate fine memristor-conductance modulation by controlling the
device’s compliance current with a specific applied gate voltage. The
gates in a row are connected to the same line (that is, word line), which
is parallel to the source line. This memristor array acts as a pseudo-
crossbar of two-port memristors by operating all transistors in the
deep-triode region.

Measurements of multi-level conductance states
To measure the reliability of multi-level conductance (see Fig. 1c) in
the array, we used a closed-loop writing method with identical SET and
RESET pulses. During the test, we supplied the programming pulses
to 1,024 randomly chosen memristors from the array to reach 32 indi-
vidual conductance targets. These target states were distributed within
the switching window from 2 μS (that is, 0.4 μA at 0.2-V read voltage)
to 20 μS (that is, 4 μA at 0.2-V read voltage) with a uniform interval
of 0.58 μS (that is, 116 nA at 0.2-V read voltage). For any desired con-
ductance state, such as It at a 0.2-V read voltage, we established the
maximum programming pulse number to be 500. In addition, we set
the defined target margin parameter ΔI to be ±50 nA. When writing an
individual cell to this conductance It from any initial state, we continu-
ously applied operating pulses up to the maximum pulse number, and
the real-time conductance value was sensed as Iread at a 0.2-V read volt-
age after each programming pulse. If Iread was within the desired range,
from It − ΔI to It + ΔI, the procedure ended successfully. Otherwise, a
subsequent SET or RESET pulse was applied accordingly (see Supple-
mentary Information). This entire process was conducted repeatedly
over the chosen memristors for the 32 conductance targets. The low-
conductance switching range and succinct operation with identical
programming pulses could be used to simplify the system design and
achieve low-power monolithic integration.

Structure of the five-layer CNN
As shown in Fig. 2a, a C1 layer measuring 26 × 26 × 8
(weight × height × depth) is acquired after convolution with kernel
weights measuring 1 × 3 × 3 × 8 (depth × weight × height × batch). The
result is subsampled by a pooling layer (S2), that uses a 3 × 3 max-
pooling operation over the input with a sliding stride of 3. Then, a C3

layer is formed with 12 stacked feature maps after convolution with
the 8 × 3 × 3 × 12 kernels. Another pooling layer (S4, 4 × 4 × 12) is subse-
quently formed using a 2 × 2 max-pooling operation with a stride of 2.
Then, the expanding 192-element vector is passed into the FC layer to
obtain the final 10 probability outputs, determining the class to which
the input belongs. The inset (dashed box) clarifies how to map the total
weights of different layers to memristor PEs of the hardware system.
In the experimental demonstration, 9 of 16 memristors in a row were
used to realize a 3 × 3 kernel, and the residual cells remained unused.
Hence, the 1 × 3 × 3 × 8 kernel weights of the C1 layer required 16 dif-
ferential rows of memristors (PE1), and the 8 × 3 × 3 × 12 kernel weights
of the C3 layer required 192 differential rows of memristors (PE1 and
PE3). Owing to the limited number of memristors per row (that is, 16),
we split the total 192 weights connected to an output neuron in the
FC layer into 24 differential rows and gathered all the corresponding
currents of the 12 positive weight rows and 12 negative weight rows
(see Supplementary Information). Thus, we were able to map the total
FC weights to PE5 (120 rows) and PE7 (120 rows) to carry out the equiva-
lent VMM of the FC layer.

mCNN demonstration
A typical CNN model is created by stacking convolutional and pooling
layers repeatedly in series, followed by one or two FC layers at the end.
Here we implemented a complete five-layer CNN with our memristor-
based hardware system to recognize MNIST handwritten-digit images.
The CNN model employed is shown in Fig. 2a. The model contains
two convolutional layers, two pooling layers and one FC layer. The
max-pooling and ReLU (rectified linear unit) activation functions are
employed. The images in this dataset are categorized into 10 classes
numbered 0 to 9. The input layer has 784 neurons, which is consist-
ent with the number of pixels in the 28 × 28 input image. There are
eight 3 × 3 kernel weights for the first convolutional layer (C1 layer in
Fig. 2a) and twelve 3 × 3 × 8 kernel weights for the second convolutional
layer (C3 layer in Fig. 2a). The convolutional operation is conducted
by calculating the weight sums between the shared local kernel and
the generated input patch of the input layer during continuous slid-
ing with a fixed stride step. This operation could be decomposed into
parallel MAC operations, which are naturally amenable to a memristor-
based in-memory-computing architecture. The input patch is unrolled
into a nine-dimensional vector. The hardware system then drives nine
channels of pulses accordingly to be supplied to nine bit lines simul-
taneously. A weight is represented by two differential 1T1R memristor
conductances, and thereby a kernel is mapped throughout to the cor-
responding positive and negative weight rows. The difference in the
cumulative flowing currents through these two related source lines is
precisely the desired weighted sum of the kernel weights and the input
patch. The elements of the second pooling layer (S4 layer in Fig. 2a) are
flattened and expended as a 192-dimensional vector to be passed into
the last FC layer, and then the weighted-sum values are fed as the input
of the softmax function to compute the classification probability. In
this manner, the system leads to a map from the original digit image
to the ten output probabilities of the last layer. Each output neuron
is associated with a defined digital class. The largest among the out-
puts indicates that the CNN classifies the input image to the matching
category accordingly. The associated pooling and ReLU activation
functions, as well as the update-calculating modules (such as those
computing softmax outputs and weight gradients), were realized by
running the codes on ARM cores.

Hybrid training on a subset of the training images
We trained the five-layer CNN model in Python and reached 97.99%
recognition accuracy on the test set. The extracted memristor compact
model was then used to validate that in situ learning of the FC conduct-
ance weights is generally adequate for tolerating device imperfections.
After transferring the weights, the recognition accuracy dropped from

Article
97.99% to 95.63% owing to the non-ideal memristor characteristics.
Afterwards, all possible combinations of different layers of the weights
were tuned—that is, we tried to train the FC weights only, the weights
of C1 only, the weights of C3 only, the weights of the FC layer and the
C3 layer together, etc. Five epochs of measurements were conducted
on the entire training set for the arch trial. As shown in Extended Data
Fig. 4b, tuning the FC conductance weights only is most efficient for
regaining a remarkable generalization result. Essentially, this approach
guarantees a high recognition accuracy and simplifies the original end-
to-end training flow by skipping the backward propagation.

Furthermore, we experimentally validated that only a small subset
of the training data is sufficient to recover the initial system accuracy
using hybrid training, which helps to minimize the hardware resources
needed for fetching training data. A five-layer CNN (shown in Fig. 2a)
was employed to demonstrate that only 10% of the training dataset is
enough to regain the high recognition accuracy of the system. Similarly
to the experimental procedure, the trained weights were first trans-
ferred to the memristor PEs, and during the transfer some mapping
errors were intentionally added by replacing 10% of the target weights
with random values; accordingly, the recognition accuracy was reduced
to 80.66%. Then 5,500 training images were randomly chosen from
the total training dataset (that is, 10% of the 55,000 training images)
to update the weights of the FC layer. After performing hybrid training
as described in the main text, the accuracy was increased up to 94.40%
after ten training epochs. To prove the robustness of our hybrid train-
ing technique, the experiment was conducted two more times, and the
result is shown in Extended Data Fig. 6c.

Furthermore, a typical ResNET-56 model was used to validate that
a small subset of the total training dataset is adequate for recovering
the high initial accuracy of the system using hybrid training. The ini-
tial accuracy achieved using software was 95.57% (training with 32-bit
single-precision floating-point weights), which was degraded to 89.64%
after the quantization using 15-level weights. Subsequently, the quan-
tized weights were mapped to the memristor arrays with the established
device model in the weight-transfer stage, and the recognition accuracy
dropped accordingly to 79.76%. Afterwards, we evaluated the system
accuracy after hybrid training using 3% of the total training dataset,
that is, 1,500 images from a total of 50,000 training samples. During the
simulation, ten trials were made. The final result is plotted in Extended
Data Fig. 6d, which depicts the recognition accuracy associated with
the key phases of the whole simulation process. It was found that a
small subset (3%) of the training data is enough to guarantee a high
recognition accuracy (92%)—a 3.57% precision decline against the soft-
ware result. This simulation result is consistent with the experimental
results described above.

The 15-level conductance weight
A 4-bit weight is generally sufficient to achieve a high recognition accu-
racy for CNNs31,35. In this work, an approximate 15-level fixed-point
weight was adopted as the differential conductance of a pair of 8-level
memristors. The smaller number of conductance states needed within
the switching window leads to faster weight transfer because a larger
target margin is permitted in the closed-loop writing. Writing an arbi-
trary 15-level fixed-point number to a differential pair of memristors
obviously calls for a consistent ability to distinguish among eight con-
ductance states in each device. In addition, such writing requires that
these states be separated within the switching window over the same
interval. During the corresponding experiment, the conductance was
programmed from 2.5 μS (0.5 μA at a 0.2-V read pulse) up to 20 μS (4 μA
at a 0.2-V read pulse) with a constant step of 2.5 μS. The equivalent
15-level weight of the memristor pair was thus referred to the 15 indi-
vidual differential conductance values that were uniformly distributed
from negative 17.5 μS (2.5 μS–20 μS) to positive 17.5 μS (20 μS–2.5 μS).
Moreover, the effect of read disturbance on the 15-level conductance
weights after applying 106 read pulses (0.2 V) is investigated in Extended

Data Fig. 7. The experimental data from the array-level tests show that
the read operations with the 0.2-V pulse do not disturb the conductance
states markedly or systematically.

Estimation of number of programming pulses and
programming currents
It is critical to assess the required number of programming pulses in
the closed-loop programming system to benchmark the system per-
formance. To estimate the number of programming pulses required
to stably converge the memristor to a desired conductance state, we
randomly selected 24 rows of 1T1R memristor devices and programmed
them to high conductance states, that is, >20 μS (4.0 μA at a 0.2-V read
pulse). Afterwards, we divided these devices to eight groups, each with
three rows. These eight groups of memristors were correspondingly
written to eight different conductance states, from 0.5 μA to 4.0 μA
with a uniform interval of 0.5 μA under a read voltage of 0.2 V. The error
margin was set as ±100 nA for the eight states. Then the required pulse
numbers were analysed statistically on the basis of the measured data,
and they are shown in Extended Data Fig. 8a, b.

Even though the test only provides a rough estimation on the required
number of programming pulses, it indicates that it strongly depends
on the gap between the starting conductance and the desired state.
The larger the gap is, the more pulses are needed. Besides, a higher
programming resolution—for example, a greater number of required
quantized conductance states within the switching window or a smaller
desired error margin—would also require a larger number of pulses.

In addition, writing currents are crucial for system design, especially
for the calculation of the system energy. However, the programming
currents cannot be deduced directly based on the reading currents
and writing voltages owing to the nonlinear current–voltage curve.
To estimate the programming currents accurately, we swept the d.c.
voltage on a single 1T1R cell to measure the write current.

The result is shown in Extended Data Fig. 8c, d. The SET current is
around 60 μA at 1.5 V and the RESET current is around 45 μA at −1.2 V.
Both voltages are smaller than those measured during the pulse pro-
gramming process in the array (that is, 2.0 V for SET pulse and −1.8 V
for RESET pulse). This is because the 50-ns pulse width used for pulse
programming is much shorter than the voltage duration in the d.c. test.

Evaluation of recognition accuracy
Although we have successfully demonstrated the mCNN using paral-
lel operations, the test system crashes easily for long running periods
owing to unstable interface connections—for example, the UART inter-
face between the upper computer and lower computer and the FMC
connector between the ZC706 board and the customized PE board
(Supplementary Information). Besides, the specific implementation of
the test system—such as the quantity and speed of the commercial ADC
chips—is not optimized for a high-performance design. To facilitate a
reliable accuracy analysis within a stable connection period, in this
study the conductance of each memristor in different PEs is written
first. Then, the current of each memristor is sensed, and this value is
consequently used to calculate the recognition accuracy using the
ARM core of the test system. The computation process is similar to
that realized by the hardware.

Learning and tuning of FC weights
During the second phase of hybrid training, we adopted in situ learn-
ing to adjust the FC memristor weights. A stochastic gradient descent
(SGD)10 with a batch size of 100 was used. Even though this mini-batch
SGD technique may require extra memory resources to store the inter-
mediate results, it could increase the converging speed and mitigate
the overfitting issue. In addition, the memory overhead could be mini-
mized by using the proposed hybrid training method to update the FC
weights only and eliminate the demand for storing the intermediate
results of all convolutional layers.

For a single iteration cycle, the 100 images drawn from the 55,000
training images were fed into the mCNN and processed from the initial
to the final output layer. Then, the gradients of the objective function
(here, the cross-entropy loss function) with respect to the FC weighted-
sum outputs were determined using the softmax probabilities and the
associated true image labels. Later, the quantitative updates of the
FC weights were calculated from the intermediate FC inputs and the
gradients as follows:

V δW ηΔ = ∑ × (1)
i

i i
=1

100

Here, the learning rate η is a constant; ΔW describes the desired updates
of the weight matrix; Vi is the intermediate 192-dimensional column vec-
tor injected into the FC layer; δi is the calculated ten-dimensional row
vector representing the objective derivatives of the FC outputs; and i
represents the image index in the batch of 100 images. The accumulated
weight updates determine the conductance changes that are ultimately
needed on the basis of the following threshold learning rule36:

W
W W

W
Δ =

Δ |Δ | ≥ Th

0 |Δ | < Th
(2)m n

m n m n

m n
,

, ,

,

where ΔWm,n represents the update cell at the cross point of row m and
column n in the weight-update matrix, and Th represents the prede-
fined threshold value used to determine whether the corresponding
memristor needs to be programmed. In this study, Th was equal to 1.5 μS
(that is, 0.3 μA at a 0.2-V read pulse). This threshold learning rule tends
to reduce the number of programming operations by filtering out the
original tiny updates, and results in training acceleration and energy
saving. Then, parallel programming of the FC memristors could be
conducted row by row24 to achieve the desired updates accordingly.
The closed-loop writing method was introduced to circumvent the
nonlinear and asymmetric conductance tuning issue, which could be
addressed by exploring new basic weight units27 and programming
schemes4. Alternatively, if the device performance (for example, the
linearity and symmetry) could be further improved, faithful in situ
updating could be used with the SGD updating method. This could
be more energy- and latency-efficient by encoding the residual error
from the output side and the input data from the input side to the cor-
responding programming pulses directly.

Degradation of conductance weight with time
In hybrid training, the kernel weights were programmed only during
the weight-transfer stage. Thus, we set up this experiment by writing
all the convolutional kernel weights onto two memristor PEs. After
programming all the conductance weights smoothly, we read out these
weights to assess how the conductance weights evolved within 30 days.

Extended Data Fig. 3a illustrates how the differential conductance
weights (represented by the current read at 0.2 V) drifted with time. The
cluster of grey curves in Extended Data Fig. 3a includes the evolution
traces of all the conductance weights, where each line represents one
individual weight. In the foreground, three typical evolution traces of
the conductance weights are highlighted to show the general trend.
Because the conductance weights were quantized and programmed
using 15 levels, we divided all the weight cells in Extended Data Fig. 3a
to these 15 different weight levels, and obtained the mean weight values
for each level statistically, as shown in Extended Data Fig. 3b. It can be
seen that the 15 levels are still accessible and there is no overlapping
between adjacent levels over time.

Extended Data Fig. 3a indicates that the majority of cells can still
maintain the weights well, even though there are some tail cells exhibit-
ing noticeable weight drift with time. However, these tail cells could
degrade the system accuracy, which will be discussed in the next
section.

Hybrid training could be used to address the device reliability issue
caused by conductance drifts to some extent, instead of adopting the
expensive reprogramming strategy. However, the reliability of the
multiple conductance states needs to be further investigated37 and
improved by device and material engineering38. The performance of
memristor-based neuromorphic systems would benefit considerably
from the improvement of device reliability and other non-ideal device
characteristics.

Effect of conductance weight degradation on recognition
accuracy
By repeating the experiment described in Fig. 3, we investigated how
the drifts of the conductance weights affect the system recognition
accuracy after hybrid training. The inference accuracy and conduct-
ance weights were recorded at 10, 30, 60, 90 and 120 min after hybrid
training.

Extended Data Fig. 3c illustrates how the system accuracy changes
during the experiment. Similarly to Extended Data Fig. 3a, in Extended
Data Fig. 3d we plot the state evolution curves of all the involved
weights, including the convolutional kernels and the weights of the FC
layer, and three typical lines. Most of the weight states are maintained
well within the first 2 h after hybrid training; however, the conductance
drifts of the tail cells lead to apparent accuracy degradation.

Training process in parallel memristor convolvers
After transferring the weights, three fetched batches of training images
were passed into the three convolver copies separately. By applying the
input signal as described in the previous section, we captured three
independent batches of interim output of the S4 layer and organized
them as the input to the FC layer in a pipeline fashion. The training
scheme sets the constraint that a batch of intermediate outputs will
not be supplied as input until the previous batch has been used to cal-
culate the desired weight updates and the corresponding FC memristor
conductances have been well tuned. The desired updates of the FC
weights with respect to the first input batch were calculated according
to equation (1), and the relevant memristor conductances were modu-
lated following the threshold learning rule of equation (2). Then, the
FC conductances were updated after inputting the second input batch
based on the well tuned FC weights of the previous phase. Afterwards,
the third batch was used to tune the FC conductance weights sequen-
tially. During this updating stage, another three batches were drawn
from the training database and fed into the unoccupied memristor
convolvers in parallel. These operations were repeated until the system
converged to a stable recognition accuracy.

Benchmarking of system metrics
We evaluated the hardware performance of the memristor-based neu-
romorphic computing system using the experimental data. Based on
the calculation results, we can conclude that the system can achieve
110 times better energy efficiency and 30 times better performance
density compared with Tesla V100 GPU.

To benchmark the performance of the memristor-based neuromor-
phic computing system, we propose a neural processing unit architec-
ture (shown in Extended Data Fig. 5) corresponding to the structure
in Fig. 1a. It consists of multiple memristor tiles and each tile contains
four memristor cores. The memristor core comprises one 128 × 128
memristor array and all the essential peripheral circuits, including
drivers, multiplexer (MUX), MUX controller, sample-and-hold blocks
and ADCs. Using the macro core, the typical energy efficiency and
performance density are assessed by combining the experimental
data (measured from the fabricated memristors at a 130-nm technol-
ogy node) and simulation data obtained with the simulator XPEsim39.

In the memristor macro core, we maximize the computing parallel-
ism by connecting two sample-and-hold blocks (S & H groups 1 and 2 in
Extended Data Fig. 5) to each column of the array. Every four columns

Article
share one common ADC converter to save chip area and power. When
applying a 1-bit read pulse to all rows at 20 MHz, one of the S & H groups
is turned on and is connected to the source lines in parallel to convert
the accumulated current to voltage. During the next 1-bit read period,
the S & H blocks are redirected to another S & H group. Meanwhile, at
the beginning of this read phase, the stable voltage signals of the previ-
ous S & H group are passed to the ADC block through the control of the
MUX-based data path, where every four stable voltages are converted
in turn to a digital signal by the shared ADC at the MUX. The 8-bit ADC
completes four conversations during the 1-bit inference stage and
consumes 2.55 pJ of energy for each conversion. In this manner, there
is no idle period for the ADCs and the input pulses are continuously
fed into the array.

The detailed metrics, including the energy, latency and area of each
block, are listed in Extended Data Table 1, which indicates the system
performance for an input of a 1-bit read pulse (0.2 V, 50 ns). In Extended
Data Table 1, the memristor-related metrics are evaluated with the
measured memristor (130 nm technology node) characteristics. The
parameters associated with the other peripheral circuitry blocks are
extracted using the simulated circuits at the 65-nm technology node,
except for the S & H block40 and the 8-bit ADC block41. When inferenc-
ing with a 0.2-V, 50-ns read pulse and considering all the 32 ADCs and
other circuitry blocks, the energy consumption for 1-bit computing is
371.89 pJ, and the total occupied chip area is 63,801.94 μm2/90.69% =
0.0704 mm2 (the area efficiency is 90.69% for the layout of the macro
blocks). Hence, we can assess the metrics of the memristor-based
neuromorphic computing system when inputting an 8-bit integer by
evaluating the performance, power, area, energy efficiency and per-
formance density, as shown in Extended Data Table 2.

From the above calculations, we obtained an energy efficiency of
11,014 GOP s−1 W−1 and a performance density of 1,164 GOP s−1 mm−2.
Compared with the metrics of Tesla V100 GPU27 (that is, energy effi-
ciency of 100 GOP s−1 W−1 and performance density of 37 GOP s−1 mm−2
for 16-bit floating-point number computing), the memristor-based
neuromorphic computing system shows roughly 110 times better
energy efficiency and 30 times better performance density. It should
be mentioned that some necessary functional blocks—such as the pool-
ing function, the activation function, and the routeing and buffering of
data between different neural-network layers—were not considered in
the comparison. Our system performance could be further improved by
using more advanced technology nodes and optimizing the computing
architecture and peripheral circuits.

Furthermore, in Extended Data Table 1, we break down the power
consumption of each circuitry block in the macro core during the
1-bit inference period. The ADC accounts for 14.4 times the power of
the memristor array; however, this number is expected to decrease
when the memristor array size increases. For example, the ADC blocks
(52 mW) would only account for 1.8 times the power of a 1,024 × 1,024
memristor array (29 mW). This result suggests that both the array size
and the ADC optimization should be carefully considered to achieve the
best computing efficiency of memristor-based neuromorphic systems.

Scalability demonstration using the ResNET model and the
CIFAR-10 database
Replicating the same kernels to different memristor arrays is a crucial
approach to improving the efficiency of memristor-based convolvers.
This replicating method could mitigate the speed mismatch between
the convolutional layer and the FC layer, and overcome the difference in
the amount of convolution operations among different convolutional
layers. In practice, we can duplicate a certain part of the kernels to real-
ize efficient acceleration. For example, the first convolutional layer in a
CNN normally contributes the greatest number of sliding convolutional
operations because it has the largest input size; therefore, it causes
the largest convolutional computing latency compared with the other
layers. In the respect, it is reasonable to replicate only the kernels on

the first convolutional layer. Further studies are required to optimize
the replicating strategy in the architecture design to yield the desired
system performance.

To validate that the approach of replicating the same kernel to dif-
ferent memristor replicas, combined with the hybrid training method,
is scalable to larger networks in the presence of intrinsic device vari-
ability, a standard residual neural network, ResNET-56, was tested on
the CIFAR-1042 database. We used the compact model incorporating
the device variability to simulate the real device performance. Taking
the programing error into consideration, a Gaussian distribution was
employed to model it as δ [nA] ~ N(0 nA, 108 nA). Here δ is the program-
ming error compared to the target conductance, and N(μ, σ) denotes a
Gaussian distribution with mean value μ and standard deviation σ. The
statistical parameters were extracted from the measurement results.
During the simulation, the memristor was programmed at eight dif-
ferent levels during the weight-transfer stage. We then realized the
equivalent 15-level weight by the differential technique as in the experi-
ments. The kernels in the first convolutional layer were replicated into
four copies of memristor arrays in the ResNET-56 model. Theoretically,
this ResNET-56 model requires 782 memristor arrays with a size of
144 × 16 to implement all the weights.

The initial accuracy achieved by the software was 95.57%, which
was degraded to 89.64% after the quantization of the 15-level weights.
Subsequently, the quantized weights were mapped to the memris-
tor arrays in the weight-transfer stage, and the recognition accuracy
further decreased to 80.06%. However, after the in situ training of the
FC layer, the accuracy ultimately recovered to 94.08%—that is, a slight
degradation of 1.49% compared with the baseline of 95.57%, as shown
in Extended Data Fig. 6a. Extended Data Fig. 6b presents the error rates
for the replicated G1, G2, G3 and G4 groups, which decreased from the
initial values of 20.24%, 19.83%, 19.58% and 19.84% to 6.11%, 5.84%, 5.87%
and 6.34%, respectively.

Data availability
The datasets that we used for benchmarking are publicly available10,42.
The training methods are provided in refs. 10,36. The experimental setups
are detailed in the text. Other data that support the findings of this study
are available from the corresponding author upon reasonable request.

Code availability
The simulator XPEsim used here is publicly available39. The codes used
for the simulations described in Methods are available from the cor-
responding author upon reasonable request.

34. Wu, W. et al. A methodology to improve linearity of analog RRAM for

neuromorphic computing. In 2018 IEEE Symposium on VLSI Technology 103–104
(IEEE, 2018).

35. Cai, Y. et al. Training low bitwidth convolutional neural network on RRAM.
In Proc. 23rd Asia and South Pacific Design Automation Conference 117–122
(IEEE, 2018).

36. Zhang, Q. et al. Sign backpropagation: an on-chip learning algorithm for analog RRAM
neuromorphic computing systems. Neural Netw. 108 217–223 (2018).

37. Zhao, M. et al. Investigation of statistical retention of filamentary analog RRAM
for neuromophic computing. In 2017 IEEE Int. Electron Devices Meeting (IEDM)
39.34.31–39.34.34 (IEEE, 2017).

38. Kim, W. et al. Confined PCM-based analog synaptic devices offering low resistance-drift
and 1000 programmable states for deep learning. In 2019 Symposium on VLSI
Technology T66–T67 (IEEE, 2019).

39. Zhang, W. et al. Design guidelines of RRAM-based neural-processing unit: a joint device–
circuit–algorithm analysis. In 2019 56th ACM/IEEE Design Automation Conference (DAC)
63.1 (IEEE, 2019).

40. O’Halloran, M. & Sarpeshkar, R. A 10-nW 12-bit accurate analog storage cell with 10-aA
leakage. IEEE J. Solid-State Circuits 39, 1985–1996 (2004).

41. Kull, L. et al. A 3.1 mW 8b 1.2 GS/s single-channel asynchronous SAR ADC with alternate
comparators for enhanced speed in 32 nm digital SOI CMOS. IEEE J. Solid-State Circuits
48, 3049–3058 (2013).

42. Krizhevsky, A. & Hinton, G. Learning Multiple Layers of Features From Tiny Images.
Technical report (University of Toronto, 2009); https://www.cs.toronto.edu/~kriz/learning-
features-2009-TR.pdf.

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Acknowledgements This work is supported in part by the National Natural Science
Foundation of China (61851404), the Beijing Municipal Science and Technology Project
(Z191100007519008), the National Key R&D Program of China (2016YFA0201801), the
Huawei Project (YBN2019075015) and the National Young Thousand Talents Plan.

Author contributions P.Y., H.W. and B.G. conceived and designed the experiments. P.Y. set
up the hardware platform and conducted the experiments. Q.Z. performed the simulation
work. W.Z. benchmarked the system performance. All authors discussed the results. P.Y.,
H.W., B.G., J.T. and J.J.Y. contributed to the writing and editing of the manuscript. H.W. and
H.Q. supervised the project.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41586-020-
1942-4.
Correspondence and requests for materials should be addressed to H.W.
Peer review information Nature thanks Darsen Lu and the other, anonymous, reviewer(s) for
their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
http://www.nature.com/reprints

Article

Extended Data Fig. 1 | Cumulative probability distribution of memristor
conductance for the remaining seven 2,048-cell arrays. The red circles
highlight abnormal data points, which deviate from their target conductance
ranges owing to device variations. a, The 32-level conductance distribution on
an entire 2,048-cell array. b–g, Conductance distributions for the first 32 rows

of memristors (namely, 512 devices) for each of the remaining 2,048-cell arrays.
A small number of writing errors were observed during the programming
procedure (red circles), which could be attributed to device variations. These
results show good consistency with Fig. 1c.

Extended Data Fig. 2 | Input patch set generated during the sliding process
and input waveforms during the convolution. a, Input nine-dimensional
vectors unrolled from the input 3 × 3 patch set. xm_n indicates the relevant pixel
at the crossing of row m and column n. The input patches are generated during
the sliding convolutional process over the input feature planes and are
subsequently injected into the memristor weight array. For a specific input
vector, each element is encoded as the corresponding input pulse applied on
the associated bit line. The red box indicates the current input vector, in
agreement with the case illustrated in b. b, Input waveform sample in a
memristor-based convolutional operation. Each element (an 8-bit binary

number) in the input vector is encoded as sequential pulses over eight time
intervals (t1, t2, …, t8). For a particular period tk, bit k determines whether a 0-V
pulse or a 0.2-V pulse is used. Each ‘1’ at a certain bit location implies the
existence of a 0.2-V read pulse in the corresponding time interval, and a ‘0’
indicates a 0-V read pulse. The corresponding output current Ik is sensed, and
this quantized value is then left-shifted by k – 1. Finally, the quantized and
shifted results with respect to the same source line over the eight time intervals
are summed together (ISL in the inset equation). The difference between every
two ISL values from a pair of differential source lines is considered to be the
expected weighted-sum result.

Article

Extended Data Fig. 3 | Drift of conductance weights in time and associated
degradation in system accuracy. a, Changes in the conductance weights with
time, over 30 days after the transfer. The grey lines present the changing traces
of all the cell weights, and the three coloured lines depict representative
evolution trends. b, Mean weight value for the cells that belong to each of the 15
levels according to a. The 15 coloured traces show the 15 mean-value evolution
traces as a function of time. c, Profile of accuracy loss during the experiment.
The overall trend of the accuracy loss indicates how the conductance weight

drifts deteriorate the recognition accuracy over time after hybrid training.
Compared with the initial state, the recognition accuracy increases by 0.37% at
t = 10 min, owing to random device-state fluctuations. d, Evolution of the
weights of the weight cells considered in c over 2 h. t0 denotes the moment
when the hybrid training is completed. The grey lines show the changing traces
of the states of the cells, and the three coloured lines depict representative
evolution trends.

Extended Data Fig. 4 | Experimental accuracy of parallel memristor
convolvers after hybrid training, and simulated training efficiency of
different combinations of tuning layers. a, The error rate on the entire
training set after hybrid training drops substantially compared with that
achieved after weight transfer for any individual convolver group. The error

rates with respect to the G1, G2 and G3 groups decrease from 4.82%, 6.43% and
5.85% to 2.89%, 4.22% and 3.40%, respectively, after hybrid training. b,
Simulation results for all combinations of tuning weights for different layers
using hybrid training and the five-layer CNN.

Article

Extended Data Fig. 5 | Architecture of the simulated memristor-based neural processing unit and relevant circuit modules in the macro core.

Extended Data Fig. 6 | Scalability of the joint strategy. The joint strategy
combines the hybrid training method and the parallel computing technique of
replicating the same kernels. We show that a small subset of training data is
sufficient for hybrid training. a, Recognition accuracies at different stages of
the simulation process. During the simulation with ResNET-56, the kernel
weights of the first convolutional layer are replicated to four groups of
memristor arrays. b, After hybrid training the error rate on the test set drops
substantially compared with that obtained immediately after weight transfer

using each convolver group. c, The error rates drop considerably after hybrid
training using 10% of the training data in the experiment with the five-layer
CNN.The three experimental results show good consistency. d, Recognition
accuracies at different stages of the simulation with ResNET-56. A high level of
accuracy is achieved even when using 3% of the training data (1,500 training
images) to update the weights of the FC layer. The mean accuracy for 10 trials is
92.00% after hybrid training, and the standard deviation is 0.8%.

Article

Extended Data Fig. 7 | Effects of read disturbance. To investigate this effect,
we set up this experiment by writing all the convolutional kernel weights to two
memristor PEs. After programming all the conductance weights smoothly, we
physically apply 1,000,000 read pulses (0.2 V) on all weight cells to see how the
read operations disturb the weight states. a, Changes in the states of the 936

conductance weightswhile cycling read operations. The grey lines give the
changing traces of the states of all cells, and the three coloured lines depict
representative evolution trends. b, Conductance evolution of eight memristor
states during 106 read cycles. c, Distributions of weight states after 1, 105, 5 × 105
and 106 read cycles.

Extended Data Fig. 8 | Test results of the required programming pulse
number and programming currents. a, Average pulse number required to
reach each target conductance state. All the initial states were programmed to
>4.0 μA. b, Stacked histogram distribution corresponding to the data in a. c,
Current–voltage curve obtained during a d.c. voltage sweep. RESET and SET
currents are measured at points #1 and #3, respectively. The conditions of

RESET and SET pulses in this study are marked by points #2 and #4,
respectively. Point #5 labels the read current at the low-resistance state (LRS)
and point #6 labels the read current at the high-resistance state (HRS). d,
Typical programming parameters. The programming current is 60 μA at 1.5 V
during the SET process and 45 μA at −1.2 V during RESET.

Article
Extended Data Table 1 | Detailed metrics of each circuitry module in the macro core with 1-bit input

BL, bit line; WL, word line; SL, source line.

Extended Data Table 2 | Benchmark metrics of a single macro core with 8-bit input

ops, operations.

	Fully hardware-implemented memristor convolutional neural network
	Online content
	Fig. 1 Memristor-based hardware system with reliable multi-level conductance states.
	Fig. 2 Five-layer mCNN with memristor convolver.
	Fig. 3 Hybrid training on the mCNN.
	Fig. 4 Parallel memristor convolvers with hybrid training for improving convolutional efficiency.
	Extended Data Fig. 1 Cumulative probability distribution of memristor conductance for the remaining seven 2,048-cell arrays.
	Extended Data Fig. 2 Input patch set generated during the sliding process and input waveforms during the convolution.
	Extended Data Fig. 3 Drift of conductance weights in time and associated degradation in system accuracy.
	Extended Data Fig. 4 Experimental accuracy of parallel memristor convolvers after hybrid training, and simulated training efficiency of different combinations of tuning layers.
	Extended Data Fig. 5 Architecture of the simulated memristor-based neural processing unit and relevant circuit modules in the macro core.
	Extended Data Fig. 6 Scalability of the joint strategy.
	Extended Data Fig. 7 Effects of read disturbance.
	Extended Data Fig. 8 Test results of the required programming pulse number and programming currents.
	Extended Data Table 1 Detailed metrics of each circuitry module in the macro core with 1-bit input.
	Extended Data Table 2 Benchmark metrics of a single macro core with 8-bit input.

